Алгоритм Тарьяна поиска LCA за О(1) в оффлайне — различия между версиями
Алесандр (обсуждение | вклад) |
Алесандр (обсуждение | вклад) |
||
| Строка 4: | Строка 4: | ||
== Алгоритм == | == Алгоритм == | ||
Подвесим наше дерево за любую вершину, и запустим [[Обход в глубину, цвета вершин|обход в глубину]] из её. | Подвесим наше дерево за любую вершину, и запустим [[Обход в глубину, цвета вершин|обход в глубину]] из её. | ||
| − | Ответ на каждый запрос мы найдём в | + | Ответ на каждый запрос мы найдём в течение поиска в глубину. Ответ для вершин <tex>v</tex>, <tex>u</tex> находится, когда мы уже посетили вершину <tex>u</tex>, а так же посетили всех сыновей вершины <tex>v</tex>, и собираемся выйти из неё. |
| − | Зафиксируем момент | + | Зафиксируем момент: мы собираемся выйти из вершины <tex>v</tex> (обработали всех сыновей) и хотим узнать ответ для пары <tex>v</tex>, <tex>u</tex>.F |
| − | Тогда заметим что ответ {{---}} это либо вершина <tex>v</tex>, либо какой-то её предок. Значит нам нужно найти | + | Тогда заметим, что ответ {{---}} это либо вершина <tex>v</tex>, либо какой-то её предок. Значит, нам нужно найти предка вершины <tex>v</tex>, который является предком вершины <tex>u</tex> с наибольшей глубиной. Заметим, что при фиксированном <tex>v</tex> каждый из предков вершины <tex>v</tex> порождает некоторый класс вершин <tex>u</tex>, для которых он является ответом, в этом классе содержатся все вершины которые находятся "слева" от этого предка. |
На рисунке разные цвета {{---}} разные классы,а белые вершины ещё не просмотренные в <tex>dfs</tex>. | На рисунке разные цвета {{---}} разные классы,а белые вершины ещё не просмотренные в <tex>dfs</tex>. | ||
| − | Классы этих вершин | + | Классы этих вершин не пересекаются, а значит мы их можем эффективно обрабатывать с помощью [[СНМ (реализация с помощью леса корневых деревьев)|dsu]]. |
Будем поддерживать массив <tex>ancestor[v]</tex> {{---}} представитель множества в котором содержится вершина <tex>v</tex>. | Будем поддерживать массив <tex>ancestor[v]</tex> {{---}} представитель множества в котором содержится вершина <tex>v</tex>. | ||
| Строка 17: | Строка 17: | ||
Когда мы приходим в новую вершину <tex>v</tex> мы должны добавить её в новый класс (<tex>ancestor[v] = v</tex>), а когда просмотрим всё поддерево какого-то ребёнка, мы должны объединить это поддерево с нашим классом (операция <tex>union</tex>), и не забыть установить представителя как вершину <tex>v</tex> (в зависимости от реализации это может быть какая-то другая вершина). | Когда мы приходим в новую вершину <tex>v</tex> мы должны добавить её в новый класс (<tex>ancestor[v] = v</tex>), а когда просмотрим всё поддерево какого-то ребёнка, мы должны объединить это поддерево с нашим классом (операция <tex>union</tex>), и не забыть установить представителя как вершину <tex>v</tex> (в зависимости от реализации это может быть какая-то другая вершина). | ||
| − | Зафиксируем | + | Зафиксируем вершину <tex>v</tex>, и выделим путь от корня до этой вершины. Теперь все рёбра "левее" этого пути уже добавлены в <tex>dsu</tex>, все рёбра правее — ещё не обработаны, а все рёбра на пути — обработаны, но в <tex>dsu</tex> ещё не добавлены, так как в <tex>dsu</tex> мы добавляем при выходе. |
Тогда можно заметить, что любая вершина из обработанных в <tex>dsu</tex> цепляются к какой-то вершине текущего пути, в <tex>dfs</tex>. | Тогда можно заметить, что любая вершина из обработанных в <tex>dsu</tex> цепляются к какой-то вершине текущего пути, в <tex>dfs</tex>. | ||
К самой первой вершине этого пути, до которой мы доберёмся, если будем просто подниматься. Очевидно, это и есть <tex>lca</tex>. | К самой первой вершине этого пути, до которой мы доберёмся, если будем просто подниматься. Очевидно, это и есть <tex>lca</tex>. | ||
После того как мы обработали всех детей вершины <tex>v</tex>, мы можем ответить на все запросы вида (<tex>v</tex>,<tex>u</tex>) где <tex>u</tex> {{---}} уже посещённая вершина. | После того как мы обработали всех детей вершины <tex>v</tex>, мы можем ответить на все запросы вида (<tex>v</tex>,<tex>u</tex>) где <tex>u</tex> {{---}} уже посещённая вершина. | ||
| − | Нетрудно заметить что ответ для <tex>lca(v, u) = ancestor | + | Нетрудно заметить что ответ для <tex>lca(v, u) = ancestor[find(u)]</tex>.Так же можно понять что для каждого запроса это условие (что одна вершина уже посещена, а другую мы обрабатываем) выполнится только один раз. |
| Строка 60: | Строка 60: | ||
=== Оценка сложности === | === Оценка сложности === | ||
Она состоит из нескольких оценок. | Она состоит из нескольких оценок. | ||
| − | Во-первых <tex> | + | Во-первых, обход в глубину работает <tex>О (n)</tex>. |
Во-вторых, операции по объединению множеств, которые в сумме для всех разумных <tex>n</tex> затрачивают <tex>О (n)</tex> операций. | Во-вторых, операции по объединению множеств, которые в сумме для всех разумных <tex>n</tex> затрачивают <tex>О (n)</tex> операций. | ||
В-третьих, для каждого запроса проверка условия и определение результата, опять же, для всех разумных <tex>n</tex> выполняется за <tex>О (1)</tex>. Итоговая асимптотика получается <tex>O (n + m)</tex>, но при достаточно больших <tex>m</tex> ответ за <tex>O (1)</tex> на один запрос. | В-третьих, для каждого запроса проверка условия и определение результата, опять же, для всех разумных <tex>n</tex> выполняется за <tex>О (1)</tex>. Итоговая асимптотика получается <tex>O (n + m)</tex>, но при достаточно больших <tex>m</tex> ответ за <tex>O (1)</tex> на один запрос. | ||
Версия 16:39, 6 июня 2014
Алгоритм Тарьяна позволяет находить наименьшего общего предка двух вершин в дереве, если все запросы известны заранее (offline). Каждый запрос к дереву — это </tex>2</tex> вершины , для которых нужно найти такую вершину , что -предок вершин и , и имеет максимальную глубину из всех таких вершин. Алгоритм позволяет найти ответы для дерева из n вершин и m запросов за время , т.е при достаточно большом m, за на запрос.
Алгоритм
Подвесим наше дерево за любую вершину, и запустим обход в глубину из её. Ответ на каждый запрос мы найдём в течение поиска в глубину. Ответ для вершин , находится, когда мы уже посетили вершину , а так же посетили всех сыновей вершины , и собираемся выйти из неё.
Зафиксируем момент: мы собираемся выйти из вершины (обработали всех сыновей) и хотим узнать ответ для пары , .F Тогда заметим, что ответ — это либо вершина , либо какой-то её предок. Значит, нам нужно найти предка вершины , который является предком вершины с наибольшей глубиной. Заметим, что при фиксированном каждый из предков вершины порождает некоторый класс вершин , для которых он является ответом, в этом классе содержатся все вершины которые находятся "слева" от этого предка.
На рисунке разные цвета — разные классы,а белые вершины ещё не просмотренные в .
Классы этих вершин не пересекаются, а значит мы их можем эффективно обрабатывать с помощью dsu.
Будем поддерживать массив — представитель множества в котором содержится вершина . Для каждого класса мы образуем множество, и представителя этого множества. Когда мы приходим в новую вершину мы должны добавить её в новый класс (), а когда просмотрим всё поддерево какого-то ребёнка, мы должны объединить это поддерево с нашим классом (операция ), и не забыть установить представителя как вершину (в зависимости от реализации это может быть какая-то другая вершина).
Зафиксируем вершину , и выделим путь от корня до этой вершины. Теперь все рёбра "левее" этого пути уже добавлены в , все рёбра правее — ещё не обработаны, а все рёбра на пути — обработаны, но в ещё не добавлены, так как в мы добавляем при выходе. Тогда можно заметить, что любая вершина из обработанных в цепляются к какой-то вершине текущего пути, в . К самой первой вершине этого пути, до которой мы доберёмся, если будем просто подниматься. Очевидно, это и есть .
После того как мы обработали всех детей вершины , мы можем ответить на все запросы вида (,) где — уже посещённая вершина. Нетрудно заметить что ответ для .Так же можно понять что для каждого запроса это условие (что одна вершина уже посещена, а другую мы обрабатываем) выполнится только один раз.
Реализация
vector <bool> visited;
vector <int> query[n];
int dsu_get (int v) {
return v == dsu[v] ? v : dsu[v] = dsu_get (dsu[v]);
}
unite (int a, int b, int new_ancestor) {
a = dsu_get (a);
b = dsu_get (b);
dsu[a] = b;
ancestor[b] = new_ancestor;
}
dfs(int v) {
visited[v] = true;
for (u таких, что (v, u) — ребро в G)
if (not visited[u])
dfs(u);
union(v, u, v);
for (i = 0; i < query[v].size; i++)
if (visited[query[v][i]])
cout << "LCA " << v << " " << u << " = " << ancestor[dsu_get(q[v][i])];
}
int main() {
dfs(1); // можно запускать от любой вершины
}
Оценка сложности
Она состоит из нескольких оценок. Во-первых, обход в глубину работает . Во-вторых, операции по объединению множеств, которые в сумме для всех разумных затрачивают операций. В-третьих, для каждого запроса проверка условия и определение результата, опять же, для всех разумных выполняется за . Итоговая асимптотика получается , но при достаточно больших ответ за на один запрос.
