Алгоритм Тарьяна поиска LCA за О(1) в оффлайне — различия между версиями
Алесандр (обсуждение | вклад) |
Алесандр (обсуждение | вклад) |
||
Строка 16: | Строка 16: | ||
Для каждого класса мы образуем множество, и представителя этого множества. | Для каждого класса мы образуем множество, и представителя этого множества. | ||
Когда мы приходим в новую вершину <tex>v</tex> мы должны добавить её в новый класс (<tex>ancestor[v] = v</tex>), а когда просмотрим всё поддерево какого-то ребёнка, мы должны объединить это поддерево с нашим классом (операция <tex>union</tex>), и не забыть установить представителя как вершину <tex>v</tex> (в зависимости от реализации это может быть какая-то другая вершина). | Когда мы приходим в новую вершину <tex>v</tex> мы должны добавить её в новый класс (<tex>ancestor[v] = v</tex>), а когда просмотрим всё поддерево какого-то ребёнка, мы должны объединить это поддерево с нашим классом (операция <tex>union</tex>), и не забыть установить представителя как вершину <tex>v</tex> (в зависимости от реализации это может быть какая-то другая вершина). | ||
− | |||
− | |||
После того как мы обработали всех детей вершины <tex>v</tex>, мы можем ответить на все запросы вида (<tex>v</tex>,<tex>u</tex>) где <tex>u</tex> {{---}} уже посещённая вершина. | После того как мы обработали всех детей вершины <tex>v</tex>, мы можем ответить на все запросы вида (<tex>v</tex>,<tex>u</tex>) где <tex>u</tex> {{---}} уже посещённая вершина. | ||
Нетрудно заметить что ответ для <tex>lca(v, u) = ancestor[find(u)]</tex>.Так же можно понять что для каждого запроса это условие (что одна вершина уже посещена, а другую мы обрабатываем) выполнится только один раз. | Нетрудно заметить что ответ для <tex>lca(v, u) = ancestor[find(u)]</tex>.Так же можно понять что для каждого запроса это условие (что одна вершина уже посещена, а другую мы обрабатываем) выполнится только один раз. | ||
+ | |||
+ | Предположим, что нашли предка, который не является наименьшим, тогда это нас моментально приводит к противоречию, потому что запросмы должны были рассмотреть ранее {{---}} на минимальном предке. | ||
Версия 16:51, 6 июня 2014
Алгоритм Тарьяна позволяет находить наименьшего общего предка двух вершин в дереве, если все запросы известны заранее (offline). Каждый запрос к дереву — это </tex>2</tex> вершины
, для которых нужно найти такую вершину , что -предок вершин и , и имеет максимальную глубину из всех таких вершин. Алгоритм позволяет найти ответы для дерева из n вершин и m запросов за время , т.е при достаточно большом m, за на запрос.Алгоритм
Подвесим наше дерево за любую вершину, и запустим обход в глубину из её. Ответ на каждый запрос мы найдём в течение поиска в глубину. Ответ для вершин , находится, когда мы уже посетили вершину , а так же посетили всех сыновей вершины , и собираемся выйти из неё.
Зафиксируем момент: мы собираемся выйти из вершины
(обработали всех сыновей) и хотим узнать ответ для пары , .F Тогда заметим, что ответ — это либо вершина , либо какой-то её предок. Значит, нам нужно найти предка вершины , который является предком вершины с наибольшей глубиной. Заметим, что при фиксированном каждый из предков вершины порождает некоторый класс вершин , для которых он является ответом, в этом классе содержатся все вершины которые находятся "слева" от этого предка.На рисунке разные цвета — разные классы,а белые вершины ещё не просмотренные в
.Классы этих вершин не пересекаются, а значит мы их можем эффективно обрабатывать с помощью dsu.
Будем поддерживать массив
— представитель множества в котором содержится вершина . Для каждого класса мы образуем множество, и представителя этого множества. Когда мы приходим в новую вершину мы должны добавить её в новый класс ( ), а когда просмотрим всё поддерево какого-то ребёнка, мы должны объединить это поддерево с нашим классом (операция ), и не забыть установить представителя как вершину (в зависимости от реализации это может быть какая-то другая вершина).После того как мы обработали всех детей вершины
, мы можем ответить на все запросы вида ( , ) где — уже посещённая вершина. Нетрудно заметить что ответ для .Так же можно понять что для каждого запроса это условие (что одна вершина уже посещена, а другую мы обрабатываем) выполнится только один раз.Предположим, что нашли предка, который не является наименьшим, тогда это нас моментально приводит к противоречию, потому что запросмы должны были рассмотреть ранее — на минимальном предке.
Реализация
vector <bool> visited; vector <int> query[n]; int dsu_get (int v) { return v == dsu[v] ? v : dsu[v] = dsu_get (dsu[v]); } unite (int a, int b, int new_ancestor) { a = dsu_get (a); b = dsu_get (b); dsu[a] = b; ancestor[b] = new_ancestor; } dfs(int v) { visited[v] = true; for (u таких, что (v, u) — ребро в G) if (not visited[u]) dfs(u); union(v, u, v); for (i = 0; i < query[v].size; i++) if (visited[query[v][i]]) cout << "LCA " << v << " " << u << " = " << ancestor[dsu_get(q[v][i])]; } int main() { dfs(1); // можно запускать от любой вершины }
Оценка сложности
Она состоит из нескольких оценок.
Во-первых, обход в глубину работает
.Во-вторых, операции по объединению множеств, которые в сумме для всех разумных
затрачивают операций.Каждый запрос
будет рассмотрен дважды — при посещение вершины и , но обработан лишь один раз, поэтому можно считать, что все запросы обработаются суммарно за .В-третьих, для каждого запроса проверка условия и определение результата, опять же, для всех разумных
выполняется за . Итоговая асимптотика получается , но при достаточно больших ответ за на один запрос.