Алгоритм Тарьяна поиска LCA за О(1) в оффлайне — различия между версиями

Материал из Викиконспекты
Перейти к: навигация, поиск
Строка 43: Строка 43:
 
         ancestor[b] = newAncestor
 
         ancestor[b] = newAncestor
 
        
 
        
 
+
<font color=green>//внешно можно запустить от любой вершины дерева.</font> 
 
  function dfs(v : '''int'''):
 
  function dfs(v : '''int'''):
 
     visited[v] = ''true''                     
 
     visited[v] = ''true''                     
Строка 55: Строка 55:
 
   
 
   
 
      
 
      
  dfs(1) // можно запускать от любой вершины
+
  dfs(1)
 
   
 
   
 
   
 
   

Версия 01:49, 7 июня 2014

Алгоритм Тарьяна позволяет находить наименьшего общего предка двух вершин в дереве, если все запросы известны заранее (offline). Каждый запрос к дереву — это </tex>2</tex> вершины [math]v[/math],[math]u[/math] для которых нужно найти такую вершину [math]k[/math], что [math]k[/math]-предок вершин [math]v[/math] и [math]u[/math], и [math]k[/math] имеет максимальную глубину из всех таких вершин. Алгоритм позволяет найти ответы для дерева из n вершин и m запросов за время [math]O (n + m)[/math], т.е при достаточно большом m, за [math]O (1)[/math] на запрос.

Алгоритм

Подвесим наше дерево за любую вершину, и запустим обход в глубину из её. Ответ на каждый запрос мы найдём в течение поиска в глубину. Ответ для вершин [math]v[/math], [math]u[/math] находится, когда мы уже посетили вершину [math]u[/math], а так же посетили всех сыновей вершины [math]v[/math], и собираемся выйти из неё.

Зафиксируем момент: мы собираемся выйти из вершины [math]v[/math] (обработали всех сыновей) и хотим узнать ответ для пары [math]v[/math], [math]u[/math].F Тогда заметим, что ответ — это либо вершина [math]v[/math], либо какой-то её предок. Значит, нам нужно найти предка вершины [math]v[/math], который является предком вершины [math]u[/math] с наибольшей глубиной. Заметим, что при фиксированном [math]v[/math] каждый из предков вершины [math]v[/math] порождает некоторый класс вершин [math]u[/math], для которых он является ответом, в этом классе содержатся все вершины которые находятся "слева" от этого предка.

На рисунке разные цвета — разные классы,а белые вершины ещё не просмотренные в [math]dfs[/math].

Классы этих вершин не пересекаются, а значит мы их можем эффективно обрабатывать с помощью dsu.

Будем поддерживать массив [math]ancestor[v][/math] — представитель множества в котором содержится вершина [math]v[/math]. Для каждого класса мы образуем множество, и представителя этого множества. Когда мы приходим в новую вершину [math]v[/math] мы должны добавить её в новый класс ([math]ancestor[v] = v[/math]), а когда просмотрим всё поддерево какого-то ребёнка, мы должны объединить это поддерево с нашим классом (операция [math]union[/math]), и не забыть установить представителя как вершину [math]v[/math] (в зависимости от реализации это может быть какая-то другая вершина).

После того как мы обработали всех детей вершины [math]v[/math], мы можем ответить на все запросы вида ([math]v[/math],[math]u[/math]) где [math]u[/math] — уже посещённая вершина. Нетрудно заметить что ответ для [math]lca(v, u) = ancestor[find(u)][/math].Так же можно понять что для каждого запроса это условие (что одна вершина уже посещена, а другую мы обрабатываем) выполнится только один раз.

Предположим, что нашли предка, который не является наименьшим, тогда это нас моментально приводит к противоречию, потому что запросмы должны были рассмотреть ранее — на минимальном предке. Если он не минимальный, значит, есть на какой-то большей глубине, то есть такая вершина, которая была посещена раньше и для которой условия на [math]u[/math] и [math]v\lt /tex\lt выполнялись, значит, тогда должна была найтись эта вершина в качестве \lt tex\gt LCA[/math].

разные цвета — разные классы, а белые вершины ещё не просмотренные в dfs

Реализация

bool visited[n]  
vector<int> query[n]

int dsuGet(v : int):
    if (v == dsu[v])
        return v
    else
        return dsu[v] = dsuGet(dsu[v])


function union(a : int, b : int, newAncestor : int ):
       a = dsuGet(a)
       b = dsuGet(b)
       dsu[a] = b
       ancestor[b] = newAncestor
      
//внешно можно запустить от любой вершины дерева.  
function dfs(v : int):
    visited[v] = true                     
    foreach u : (v, u) in G
        if not visited[u]                  
            dfs(u)
            union(v, u, v)
    for i = 0 to query[v].size - 1
        if visited[query[v][i]]
            запомнить, что ответ для запроса (v,u) = ancestor[dsu_get(q[v][i])]

   
dfs(1)


Оценка сложности

Она состоит из нескольких оценок.

Во-первых, обход в глубину работает [math]O (n)[/math].

Во-вторых, операции по объединению множеств, которые в сумме для всех разумных [math]n[/math] затрачивают [math]O (n)[/math] операций.

Каждый запрос [math](u, v)[/math] будет рассмотрен дважды — при посещение вершины [math]u[/math] и [math]v[/math], но обработан лишь один раз, поэтому можно считать, что все запросы обработаются суммарно за [math]O (m)[/math].

В-третьих, для каждого запроса проверка условия и определение результата, опять же, для всех разумных [math]n[/math] выполняется за [math]O (1)[/math]. Итоговая асимптотика получается [math]O (n + m)[/math], но при достаточно больших [math]m[/math] ответ за [math]O (1)[/math] на один запрос.