Алгоритм Тарьяна поиска LCA за О(1) в оффлайне — различия между версиями
Строка 3: | Строка 3: | ||
== Алгоритм == | == Алгоритм == | ||
Подвесим наше дерево за любую вершину, и запустим [[Обход в глубину, цвета вершин|обход в глубину]] из её. | Подвесим наше дерево за любую вершину, и запустим [[Обход в глубину, цвета вершин|обход в глубину]] из её. | ||
− | Ответ на каждый запрос мы найдём в течение поиска в глубину. Ответ для вершин <tex>v | + | Ответ на каждый запрос мы найдём в течение поиска в глубину. Ответ для вершин <tex>\langle v, u \rangle </tex> находится, когда мы уже посетили вершину <tex>u</tex>, а так же посетили всех сыновей вершины <tex>v</tex>, и собираемся выйти из неё. |
Зафиксируем момент: мы собираемся выйти из вершины <tex>v</tex> (обработали всех сыновей) и хотим узнать ответ для пары <tex>v</tex>, <tex>u</tex>. | Зафиксируем момент: мы собираемся выйти из вершины <tex>v</tex> (обработали всех сыновей) и хотим узнать ответ для пары <tex>v</tex>, <tex>u</tex>. | ||
Строка 16: | Строка 16: | ||
Когда мы приходим в новую вершину <tex>v</tex> мы должны добавить её в новый класс (<tex>ancestor[v] = v</tex>), а когда просмотрим всё поддерево какого-то ребёнка, мы должны объединить это поддерево с нашим классом (операция <tex>union</tex>), и не забыть установить представителя как вершину <tex>v</tex> (в зависимости от реализации это может быть какая-то другая вершина). | Когда мы приходим в новую вершину <tex>v</tex> мы должны добавить её в новый класс (<tex>ancestor[v] = v</tex>), а когда просмотрим всё поддерево какого-то ребёнка, мы должны объединить это поддерево с нашим классом (операция <tex>union</tex>), и не забыть установить представителя как вершину <tex>v</tex> (в зависимости от реализации это может быть какая-то другая вершина). | ||
− | После того как мы обработали всех детей вершины <tex>v</tex>, мы можем ответить на все запросы вида | + | После того как мы обработали всех детей вершины <tex>v</tex>, мы можем ответить на все запросы вида <tex>\langle v, u \rangle </tex> где <tex>u</tex> {{---}} уже посещённая вершина. |
− | Нетрудно заметить что ответ для <tex>lca | + | Нетрудно заметить что ответ для <tex>lca<tex>\langle v, u \rangle </tex> = ancestor[find(u)]</tex>.Так же можно понять что для каждого запроса это условие (что одна вершина уже посещена, а другую мы обрабатываем) выполнится только один раз. |
Предположим, что нашли предка, который не является наименьшим, тогда это нас моментально приводит к противоречию, потому что запросмы должны были рассмотреть ранее {{---}} на минимальном предке. | Предположим, что нашли предка, который не является наименьшим, тогда это нас моментально приводит к противоречию, потому что запросмы должны были рассмотреть ранее {{---}} на минимальном предке. | ||
Строка 60: | Строка 60: | ||
Во-вторых, операции по объединению множеств, которые в сумме для всех разумных <tex>n</tex> затрачивают <tex>O (n)</tex> операций. | Во-вторых, операции по объединению множеств, которые в сумме для всех разумных <tex>n</tex> затрачивают <tex>O (n)</tex> операций. | ||
− | Каждый запрос <tex> | + | Каждый запрос <tex>\langle v, u \rangle </tex> будет рассмотрен дважды {{---}} при посещение вершины <tex>u</tex> и <tex>v</tex>, но обработан лишь один раз, поэтому можно считать, что все запросы обработаются суммарно за <tex>O (m)</tex>. |
В-третьих, для каждого запроса проверка условия и определение результата, опять же, для всех разумных <tex>n</tex> выполняется за <tex>O (1)</tex>. Итоговая асимптотика получается <tex>O (n + m)</tex>, но при достаточно больших <tex>m</tex> ответ за <tex>O (1)</tex> на один запрос. | В-третьих, для каждого запроса проверка условия и определение результата, опять же, для всех разумных <tex>n</tex> выполняется за <tex>O (1)</tex>. Итоговая асимптотика получается <tex>O (n + m)</tex>, но при достаточно больших <tex>m</tex> ответ за <tex>O (1)</tex> на один запрос. |
Версия 16:22, 7 июня 2014
Дано дерево и набор запросов: пары вершин
, и для каждой пары нужно найти наименьшего общего предка. Запросы нам известны заранее, т.е задача сформулирована в режиме оффлайн. Алгоритм позволяет найти ответы для дерева из вершин и запросов за время , т.е при достаточно большом , за на запрос.Содержание
Алгоритм
Подвесим наше дерево за любую вершину, и запустим обход в глубину из её. Ответ на каждый запрос мы найдём в течение поиска в глубину. Ответ для вершин находится, когда мы уже посетили вершину , а так же посетили всех сыновей вершины , и собираемся выйти из неё.
Зафиксируем момент: мы собираемся выйти из вершины
(обработали всех сыновей) и хотим узнать ответ для пары , . Тогда заметим, что ответ — это либо вершина , либо какой-то её предок. Значит, нам нужно найти предка вершины , который является предком вершины с наибольшей глубиной. Заметим, что при фиксированном каждый из предков вершины порождает некоторый класс вершин , для которых он является ответом, в этом классе содержатся все вершины которые находятся "слева" от этого предка.На рисунке разные цвета — разные классы,а белые вершины ещё не просмотренные в
.Классы этих вершин не пересекаются, а значит мы их можем эффективно обрабатывать с помощью системы непересекающихся множеств, которую будем храниться в массиве .
Будем поддерживать массив
— представитель множества в котором содержится вершина . Для каждого класса мы образуем множество, и представителя этого множества. Когда мы приходим в новую вершину мы должны добавить её в новый класс ( ), а когда просмотрим всё поддерево какого-то ребёнка, мы должны объединить это поддерево с нашим классом (операция ), и не забыть установить представителя как вершину (в зависимости от реализации это может быть какая-то другая вершина).После того как мы обработали всех детей вершины
, мы можем ответить на все запросы вида где — уже посещённая вершина. Нетрудно заметить что ответ для = ancestor[find(u)]</tex>.Так же можно понять что для каждого запроса это условие (что одна вершина уже посещена, а другую мы обрабатываем) выполнится только один раз.Предположим, что нашли предка, который не является наименьшим, тогда это нас моментально приводит к противоречию, потому что запросмы должны были рассмотреть ранее — на минимальном предке. Если он не минимальный, значит, есть на какой-то большей глубине, то есть такая вершина, которая была посещена раньше и для которой условия на
и выполнялись, значит, тогда должна была найтись эта вершина в качестве .Реализация
bool visited[n] vector<int> query[n] int dsuGet(v : int): if (v == dsu[v]) return v else return dsu[v] = dsuGet(dsu[v]) function union(a : int, b : int, newAncestor : int ): a = dsuGet(a) b = dsuGet(b) dsu[a] = b ancestor[b] = newAncestor // можно запустить от любой вершины дерева. function dfs(v : int): visited[v] = true foreach u : (v, u) in G if not visited[u] dfs(u) union(v, u, v) for i = 0 to query[v].size - 1 if visited[query[v][i]] запомнить, что ответ для запроса (v,u) = ancestor[dsu_get(q[v][i])]
Оценка сложности
Она состоит из нескольких оценок.
Во-первых, обход в глубину работает
.Во-вторых, операции по объединению множеств, которые в сумме для всех разумных
затрачивают операций.Каждый запрос
будет рассмотрен дважды — при посещение вершины и , но обработан лишь один раз, поэтому можно считать, что все запросы обработаются суммарно за .В-третьих, для каждого запроса проверка условия и определение результата, опять же, для всех разумных
выполняется за . Итоговая асимптотика получается , но при достаточно больших ответ за на один запрос.