Нормальная форма Хомского — различия между версиями
Строка 6: | Строка 6: | ||
*<tex>S \rightarrow \varepsilon</tex> (при условии, что <tex>S</tex> не содержится в правых частях правил) | *<tex>S \rightarrow \varepsilon</tex> (при условии, что <tex>S</tex> не содержится в правых частях правил) | ||
Избавимся от правил, в правых частях которых записаны два символа, один из которых является терминалом, то есть правил вида <tex>A \rightarrow Bc</tex> и <tex>A \rightarrow bc</tex>. | Избавимся от правил, в правых частях которых записаны два символа, один из которых является терминалом, то есть правил вида <tex>A \rightarrow Bc</tex> и <tex>A \rightarrow bc</tex>. | ||
− | Введем для каждого терминала <tex>a</tex> "персональный" нетерминал <tex>N_a</tex>. Затем правила вида <tex>A \rightarrow Bc</tex> заменим парой правил <tex>A \rightarrow | + | Введем для каждого терминала <tex>a</tex> "персональный" нетерминал <tex>N_a</tex>. Затем правила вида <tex>A \rightarrow Bc</tex> заменим парой правил <tex>A \rightarrow BN_c</tex> и <tex>N_c \rightarrow c</tex>, а правила вида <tex>A \rightarrow bc</tex> {{---}} тройкой правил <tex>A \rightarrow N_bN_c</tex>, <tex>N_b \rightarrow b</tex> и <tex>N_c \rightarrow c</tex>. |
− | Теперь у нас остались только правила вида <tex>A \rightarrow BC</tex>, <tex>A \rightarrow | + | Теперь у нас остались только правила вида <tex>A \rightarrow BC</tex>, <tex>A \rightarrow a</tex> и <tex>S \rightarrow \varepsilon</tex> (при условии, что <tex>S</tex> не содержится в правых частях правил). Грамматика, содержащая правила только такого вида, называется грамматикой в '''нормальной форме Хомского'''. |
Заметим, что любую контекстно-свободную грамматику можно привести к нормальной форме Хомского. Такая форма грамматики очень удобна для работы многих алгоритмов над грамматиками. | Заметим, что любую контекстно-свободную грамматику можно привести к нормальной форме Хомского. Такая форма грамматики очень удобна для работы многих алгоритмов над грамматиками. |
Версия 19:22, 13 октября 2010
Рассмотрим контекстно-свободную грамматику , из которой удалены бесполезные символы, , -правиладлинные правила и цепные правила. Такая грамматика содержит только правила следующего вида:
- (при условии, что не содержится в правых частях правил)
Избавимся от правил, в правых частях которых записаны два символа, один из которых является терминалом, то есть правил вида
и . Введем для каждого терминала "персональный" нетерминал . Затем правила вида заменим парой правил и , а правила вида — тройкой правил , и .Теперь у нас остались только правила вида
, и (при условии, что не содержится в правых частях правил). Грамматика, содержащая правила только такого вида, называется грамматикой в нормальной форме Хомского.Заметим, что любую контекстно-свободную грамматику можно привести к нормальной форме Хомского. Такая форма грамматики очень удобна для работы многих алгоритмов над грамматиками.