Изменения

Перейти к: навигация, поиск

Примеры матроидов

696 байт добавлено, 22:11, 7 июня 2014
Разделенный матроид
{{Определение
|definition=
Пусть <tex>X = \bigcup\limits_{i=_1}^n X_i</tex>, при этом <tex> X_i \cap X_j = 0</tex> , <tex>\forall i \neq j,</tex> и <tex>k_1 \dots k_n</tex> — положительные целые числа. <tex>I = \mathcal{f} A \subset X \mid \left\vert A \cap X_i \right\vert \leqslant k_i, \forall i: 1 \leqslant i \leqslant n \mathcal {g}</tex>. Тогда <tex>M = \langle X, I \rangle </tex> называют '''разделенным матроидом (partition matroid)'''
}}
3) <tex>A \in I, B \in I, \left\vert A \right\vert < \left\vert B \right\vert \Rightarrow \mathcal {9} x \in B \setminus A, A \cup \mathcal{f} x \mathcal {g} \in I</tex>
Предположим, что Пусть <tex>\forall x \in B \setminus A, A \cup \mathcal{f} x \mathcal {g} \notin I \Rightarrow \exists X_j, k_j: \left\vert A \cup \mathcal{f} x \mathcal {g} \cap X_j \right\vert > k_j</tex>, но так как <tex>A \in I</tex>, то есть <tex> \left\vert A \cap X_j \right\vert \leqslant k_j \Rightarrow \left\vert A \cap X_j \right\vert = k_j</tex> и <tex>x \in X_j</tex> .Из последнего следует, что <tex>\left\vert B \setminus A \right\vert \subset X_j</tex>. <tex>\left\vert A \cap X_j \right\vert = \left\vert ((A \cap B) \cup (B \setminus A)) \cap X_j \right\vert = k_j</tex>, а <tex>\left\vert B \cap X_j \right\vert = \left\vert B \cap X_j \right\vert = \left\vert ((A \cap B) \cup (A \setminus B)) \cap X_j \right\vert</tex>.Так как <tex>\left\vert A \right\vert < \left\vert B \right\vert \Rightarrow \left\vert A \setminus B \right\vert < \left\vert B \setminus A \right\vert</tex>, тогда <tex>\left\vert B \cap X_j \right\vert > k_j</tex>, но <tex>B \in I</tex>, противоречие.
137
правок

Навигация