Алгоритм Тарьяна поиска LCA за O(1) в оффлайн — различия между версиями
Shersh (обсуждение | вклад) (→Алгоритм) |
Shersh (обсуждение | вклад) |
||
Строка 18: | Строка 18: | ||
После того как мы обработали всех детей вершины <tex>v</tex>, мы можем ответить на все запросы вида <tex>\langle v, u \rangle </tex>, где <tex>u</tex> {{---}} уже посещённая вершина. | После того как мы обработали всех детей вершины <tex>v</tex>, мы можем ответить на все запросы вида <tex>\langle v, u \rangle </tex>, где <tex>u</tex> {{---}} уже посещённая вершина. | ||
Нетрудно заметить, что <tex>lca(v, u) = ancestor[\mathrm{find}(u)]</tex>. Для каждого запроса это условие (что одна вершина уже посещена, а другую мы обрабатываем) выполнится только один раз. | Нетрудно заметить, что <tex>lca(v, u) = ancestor[\mathrm{find}(u)]</tex>. Для каждого запроса это условие (что одна вершина уже посещена, а другую мы обрабатываем) выполнится только один раз. | ||
− | |||
− | |||
− | |||
[[file:mytree.png|500px|разные цвета {{---}} разные классы, а белые вершины ещё не просмотренные в dfs]] | [[file:mytree.png|500px|разные цвета {{---}} разные классы, а белые вершины ещё не просмотренные в dfs]] | ||
Строка 52: | Строка 49: | ||
'''if''' visited[query[v][i]] | '''if''' visited[query[v][i]] | ||
запомнить, что ответ для запроса <tex>\langle v, u \rangle </tex> = ancestor[dsuGet[q[v][i]]] | запомнить, что ответ для запроса <tex>\langle v, u \rangle </tex> = ancestor[dsuGet[q[v][i]]] | ||
+ | |||
+ | == Корректность == | ||
+ | Предположим, что нашли предка, который не является наименьшим, тогда это нас моментально приводит к противоречию, потому что запросмы должны были рассмотреть ранее {{---}} на минимальном предке. | ||
+ | Если он не минимальный, значит, есть на какой-то большей глубине, то есть такая вершина, которая была посещена раньше и для которой условия на <tex>u</tex> и <tex>v</tex> выполнялись, значит, тогда должна была найтись эта вершина в качестве <tex>LCA</tex>. | ||
== Оценка сложности == | == Оценка сложности == |
Версия 16:30, 9 июня 2014
Дано дерево и набор запросов: пары вершин
, и для каждой пары нужно найти наименьшего общего предка. Считаем, что все запросы известны заранее, поэтому будем решать задачу оффлайн. Алгоритм позволяет найти ответы для дерева из вершин и запросов за время , то есть при достаточно большом , за на запрос.Алгоритм
Подвесим наше дерево за любую вершину, и запустим обход в глубину из неё. Ответ на каждый запрос мы найдём в течение поиска в глубину. Ответ для вершин и находится, когда мы уже посетили вершину , а так же посетили всех сыновей вершины , и собираемся выйти из неё.
Зафиксируем момент: мы собираемся выйти из вершины
(обработали всех сыновей) и хотим узнать ответ для пары , . Тогда заметим, что ответ — это либо вершина , либо какой-то её предок. Значит, нам нужно найти предка вершины , который является предком вершины с наибольшей глубиной. Заметим, что при фиксированном каждый из предков вершины порождает некоторый класс вершин , для которых он является ответом, в этом классе содержатся все вершины которые находятся "слева" от этого предка.На рисунке разные цвета — разные классы, а белые вершины ещё не просмотренные в
.Классы этих вершин не пересекаются, а значит мы их можем эффективно обрабатывать с помощью системы непересекающихся множеств, которую будем хранить в массиве .
Будем поддерживать массив
— представитель множества в котором содержится вершина . Для каждого класса мы образуем множество и представителя этого множества. Когда, мы приходим в новую вершину мы должны добавить её в новый класс ( ), а когда просмотрим всё поддерево какого-то ребёнка, мы должны объединить это поддерево с нашим классом (операция ) и не забыть установить представителя как вершину .После того как мы обработали всех детей вершины
, мы можем ответить на все запросы вида , где — уже посещённая вершина. Нетрудно заметить, что . Для каждого запроса это условие (что одна вершина уже посещена, а другую мы обрабатываем) выполнится только один раз.Реализация
bool visited[n]
vector<int> query[n]
int dsuGet(v : int):
if v == dsu[v]
return v
else
return dsu[v] = dsuGet(dsu[v])
function union(a : int, b : int, newAncestor : int):
a = dsuGet(a)
b = dsuGet(b)
dsu[a] = b
ancestor[b] = newAncestor
// можно запустить от любой вершины дерева.
function dfs(v : int):
visited[v] = true
foreach u : (v, u) in G
if not visited[u]
dfs(u)
union(v, u, v)
for i = 0 to query[v].size - 1
if visited[query[v][i]]
запомнить, что ответ для запроса
= ancestor[dsuGet[q[v][i]]]
Корректность
Предположим, что нашли предка, который не является наименьшим, тогда это нас моментально приводит к противоречию, потому что запросмы должны были рассмотреть ранее — на минимальном предке. Если он не минимальный, значит, есть на какой-то большей глубине, то есть такая вершина, которая была посещена раньше и для которой условия на
и выполнялись, значит, тогда должна была найтись эта вершина в качестве .Оценка сложности
Она состоит из нескольких оценок.
- Обход в глубину выполняет за .
- Операции по объединению множеств, которые в сумме для всех разумных затрачивают операций. Каждый запрос будет рассмотрен дважды — при посещении вершины и , но обработан лишь один раз, поэтому можно считать, что все запросы обработаются суммарно за .
- Для каждого запроса проверка условия и определение результата, опять же, для всех разумных выполняется за .
Итоговая асимптотика получается
, но при достаточно больших ответ за на один запрос.