Алгоритм Тарьяна поиска LCA за O(1) в оффлайн — различия между версиями
Shersh (обсуждение | вклад) (→Корректность) |
Shersh (обсуждение | вклад) (→Алгоритм) |
||
Строка 8: | Строка 8: | ||
Тогда заметим, что ответ {{---}} это либо вершина <tex>u</tex>, либо какой-то её предок. Значит, нам нужно найти предка вершины <tex>v</tex>, который является предком вершины <tex>u</tex> с наибольшей глубиной. Заметим, что при фиксированном <tex>v</tex> каждый из предков вершины <tex>v</tex> порождает некоторый класс вершин <tex>u</tex>, для которых он является ответом, в этом классе содержатся все вершины которые находятся "слева" от этого предка. | Тогда заметим, что ответ {{---}} это либо вершина <tex>u</tex>, либо какой-то её предок. Значит, нам нужно найти предка вершины <tex>v</tex>, который является предком вершины <tex>u</tex> с наибольшей глубиной. Заметим, что при фиксированном <tex>v</tex> каждый из предков вершины <tex>v</tex> порождает некоторый класс вершин <tex>u</tex>, для которых он является ответом, в этом классе содержатся все вершины которые находятся "слева" от этого предка. | ||
− | На рисунке разные цвета {{---}} разные классы, а белые вершины ещё не просмотренные в <tex>dfs</tex>. | + | На рисунке разные цвета {{---}} разные классы, а белые вершины {{---}} ещё не просмотренные в <tex>dfs</tex>. |
[[file:mytree.png|500px|разные цвета {{---}} разные классы, а белые вершины ещё не просмотренные в dfs]] | [[file:mytree.png|500px|разные цвета {{---}} разные классы, а белые вершины ещё не просмотренные в dfs]] | ||
− | Классы этих вершин не пересекаются, а значит мы можем их эффективно обрабатывать с помощью [[СНМ (реализация с помощью леса корневых деревьев)|системы непересекающихся множеств]], которую будем хранить в массиве <tex>dsu</tex>. | + | Классы этих вершин не пересекаются, а значит, мы можем их эффективно обрабатывать с помощью [[СНМ (реализация с помощью леса корневых деревьев)|системы непересекающихся множеств]], которую будем хранить в массиве <tex>dsu</tex>. |
− | Будем поддерживать массив <tex>ancestor[1 \dots n]</tex>, где <tex> ancestor[w] </tex> {{---}} наименьший общий предок всех вершин, которые лежат в том же классе, что и <tex> w </tex>. Обновление массива <tex> ancestor </tex> для каждого элемента будет неэффективно. Поэтому зафиксируем в каждом классе какого-то представителя | + | Будем поддерживать также массив <tex>ancestor[1 \dots n]</tex>, где <tex> ancestor[w] </tex> {{---}} наименьший общий предок всех вершин, которые лежат в том же классе, что и <tex> w </tex>. Обновление массива <tex> ancestor </tex> для каждого элемента будет неэффективно. Поэтому зафиксируем в каждом классе какого-то представителя. Функция <tex> \mathrm{find}(w) </tex> вернёт представителя класса, в котором находится вершина <tex> w </tex>. Тогда наименьшим общим предком всех вершин из класса <tex> w </tex> будет вершина <tex> ancestor[\mathrm{find}(w)] </tex>. |
− | + | Обновление массива <tex> ancestor </tex> будем производить следующим образом: | |
* когда мы приходим в новую вершину <tex>v</tex> мы должны добавить её в новый класс {{---}} <tex>ancestor[v] = v</tex> | * когда мы приходим в новую вершину <tex>v</tex> мы должны добавить её в новый класс {{---}} <tex>ancestor[v] = v</tex> | ||
* когда просмотрим всё поддерево какого-то ребёнка <tex> u </tex> у вершины <tex> v </tex>, мы должны объединить поддерево ребёнка с классом вершины <tex> v </tex> (<tex>\mathrm{union}(v, u, v)</tex> {{---}} объединить классы вершин <tex> v </tex> и <tex> u </tex>, а наименьшим общим предком представителя нового класса сделать вершину <tex> v </tex>). Система непересекающихся множеств сама определит представителя в зависимости от используемой нами эвристики. Нам надо лишь правильно установить значение массива <tex> ancestor </tex> у нового представителя. | * когда просмотрим всё поддерево какого-то ребёнка <tex> u </tex> у вершины <tex> v </tex>, мы должны объединить поддерево ребёнка с классом вершины <tex> v </tex> (<tex>\mathrm{union}(v, u, v)</tex> {{---}} объединить классы вершин <tex> v </tex> и <tex> u </tex>, а наименьшим общим предком представителя нового класса сделать вершину <tex> v </tex>). Система непересекающихся множеств сама определит представителя в зависимости от используемой нами эвристики. Нам надо лишь правильно установить значение массива <tex> ancestor </tex> у нового представителя. |
Версия 17:45, 9 июня 2014
Дано дерево и набор запросов: пары вершин
, и для каждой пары нужно найти наименьшего общего предка. Считаем, что все запросы известны заранее, поэтому будем решать задачу оффлайн. Алгоритм позволяет найти ответы для дерева из вершин и запросов за время , то есть при достаточно большом , за на запрос.Алгоритм
Подвесим наше дерево за любую вершину, и запустим обход в глубину из неё. Ответ на каждый запрос мы найдём в течение поиска в глубину. Ответ для вершин и находится, когда мы уже посетили вершину , а так же посетили всех сыновей вершины , и собираемся выйти из неё.
Зафиксируем момент: мы собираемся выйти из вершины
(обработали всех сыновей) и хотим узнать ответ для пары , . Тогда заметим, что ответ — это либо вершина , либо какой-то её предок. Значит, нам нужно найти предка вершины , который является предком вершины с наибольшей глубиной. Заметим, что при фиксированном каждый из предков вершины порождает некоторый класс вершин , для которых он является ответом, в этом классе содержатся все вершины которые находятся "слева" от этого предка.На рисунке разные цвета — разные классы, а белые вершины — ещё не просмотренные в
.Классы этих вершин не пересекаются, а значит, мы можем их эффективно обрабатывать с помощью системы непересекающихся множеств, которую будем хранить в массиве .
Будем поддерживать также массив
, где — наименьший общий предок всех вершин, которые лежат в том же классе, что и . Обновление массива для каждого элемента будет неэффективно. Поэтому зафиксируем в каждом классе какого-то представителя. Функция вернёт представителя класса, в котором находится вершина . Тогда наименьшим общим предком всех вершин из класса будет вершина .Обновление массива
будем производить следующим образом:- когда мы приходим в новую вершину мы должны добавить её в новый класс —
- когда просмотрим всё поддерево какого-то ребёнка у вершины , мы должны объединить поддерево ребёнка с классом вершины ( — объединить классы вершин и , а наименьшим общим предком представителя нового класса сделать вершину ). Система непересекающихся множеств сама определит представителя в зависимости от используемой нами эвристики. Нам надо лишь правильно установить значение массива у нового представителя.
После того как мы обработали всех детей вершины
, мы можем ответить на все запросы вида , где — уже посещённая вершина. Нетрудно заметить, что . Для каждого запроса это условие (что одна вершина уже посещена, а другую мы обрабатываем) выполнится только один раз.Реализация
bool visited[n] function union(x : int, y : int, newAncestor : int): leader = dsuUnion(x, y) // объединяем классы вершини и получаем нового представителя класса ancestor[leader] = newAncestor // устанавливаем нового предка представителю множества // можно запустить от любой вершины дерева. function dfs(v : int): visited[v] = true foreach u : (v, u) in G if not visited[u] dfs(u) union(v, u, v) foreach u : — есть такой запрос if visited[u] запомнить, что ответ для запроса = ancestor[find[u]]
Корректность
Случай, когда
является наименьшим общим предком вершин и , обработается правильно, потому что по алгоритму в этот момент .Пусть теперь наименьшим общим предком вершин
и будет вершина, отличная от этих двух. Во время обработки запроса алгоритм точно вернёт общего предка этих двух вершин, так как он будет предком одной из вершин по массиву , а предком другой из-за обхода в глубину.Покажем, что найдём наименьшего предка. Пусть это не так. Тогда существует какая-то вершина
, которая тоже является предком вершин и и из которой мы вышли позже во время обхода в глубину. Но тогда ситуация, что одна из вершин посещена, а у другой рассмотрены все дети, должна была выполниться раньше, и в качестве ответа должна была вернуться вершина .Заметим, что для корректности алгоритма достаточно было бы одного массива
, а представителем класса всегда выбирать наименьшего общего предка вершин класса. Это несложно сделать, так как мы всегда объединяем ребёнка со своим родителем. Но в таком случае алгорим получился бы менее эффективным, потому что одна только эвристика сжатия путей работает недостаточно быстро.Оценка сложности
Она состоит из нескольких оценок.
- Обход в глубину выполняет за .
- Операции по объединению множеств, которые в сумме для всех разумных затрачивают операций. Каждый запрос будет рассмотрен дважды — при посещении вершины и , но обработан лишь один раз, поэтому можно считать, что все запросы обработаются суммарно за .
- Для каждого запроса проверка условия и определение результата, опять же, для всех разумных выполняется за .
Итоговая асимптотика получается
, но при достаточно больших ответ за на один запрос.