Теорема о существовании простого цикла в случае существования цикла — различия между версиями
Shevchen (обсуждение | вклад) |
|||
Строка 26: | Строка 26: | ||
== Замечания == | == Замечания == | ||
− | * Наличие двух различных рёберно-простых путей между какими-либо вершинами графа равносильно наличию | + | * Наличие двух различных рёберно-простых путей между какими-либо вершинами графа равносильно наличию цикла в этом графе. |
* Так как вершинно-простой путь всегда является рёберно-простым, данная теорема справедлива и для вершинно-простых путей (усиление условия). | * Так как вершинно-простой путь всегда является рёберно-простым, данная теорема справедлива и для вершинно-простых путей (усиление условия). | ||
* Так как вершинно-простой цикл всегда является рёберно-простым, данная теорема справедлива и для рёберно-простого цикла (ослабление результата). | * Так как вершинно-простой цикл всегда является рёберно-простым, данная теорема справедлива и для рёберно-простого цикла (ослабление результата). | ||
Строка 34: | Строка 34: | ||
== См. также == | == См. также == | ||
+ | * [[Основные определения теории графов]] | ||
* [[Теорема о существовании простого пути в случае существования пути]] | * [[Теорема о существовании простого пути в случае существования пути]] | ||
[[Категория: Алгоритмы и структуры данных]] | [[Категория: Алгоритмы и структуры данных]] | ||
[[Категория: Основные определения теории графов]] | [[Категория: Основные определения теории графов]] |
Версия 23:39, 13 октября 2010
Назовём два пути одинаковыми, если последовательности вершин и рёбер графа, задающие их, совпадают полностью. Иначе будем считать пути различными.
Теорема: | ||
Если между двумя вершинами неориентированного графа существуют два различных рёберно-простых пути, то в этом графе существует простой цикл. | ||
Доказательство: | ||
Для доказательства этой теоремы введём определение.
Очевидно, это условие не распространяется на первую и последнюю вершины цикла.
Рассмотрим конкатенацию первого нового пути и развёрнутого второго нового пути. Она будет циклом, так как начальная и конечная вершины совпадают, изначально пути были рёберно-простыми, а в точке соединения, равно как и в точке замыкания цикла, условие различности двух идущих подряд рёбер выполняется. Мы получили цикл, определим его: , .
1. Для вершиныНачнём процесс с вершины найдём момент её последнего вхождения в цикл – . 2. Удалим отрезок цикла от до , включительно. Получившаяся последовательность вершин и рёбер графа останется циклом, и в нём вершина будет содержаться ровно один раз. и будем повторять его каждый раз для следующей вершины нового цикла, пока не дойдём до последней. По построению, получившийся цикл будет содержать каждую из вершин графа не более одного раза, а значит, будет простым. | ||
Замечания
- Наличие двух различных рёберно-простых путей между какими-либо вершинами графа равносильно наличию цикла в этом графе.
- Так как вершинно-простой путь всегда является рёберно-простым, данная теорема справедлива и для вершинно-простых путей (усиление условия).
- Так как вершинно-простой цикл всегда является рёберно-простым, данная теорема справедлива и для рёберно-простого цикла (ослабление результата).
- Утверждение
Если две вершины графа лежат на цикле, то они лежат на простом цикле.
в общем случае неверно, так как эти вершины могут лежать в разных компонентах вершинной или рёберной двусвязности: все пути из одной вершины в другую будут содержать одну и ту же точку сочленения или один и тот же мост.