PSRS-сортировка — различия между версиями
Shersh (обсуждение | вклад) (→Анализ) |
AlexeyL (обсуждение | вклад) (→Алгоритм) |
||
Строка 5: | Строка 5: | ||
== Алгоритм == | == Алгоритм == | ||
− | * Начало | + | * Начало. |
* '''Шаг 1''' Исходный массив в <tex>n</tex> элементов разделим поровну между <tex>p</tex> процессорами. | * '''Шаг 1''' Исходный массив в <tex>n</tex> элементов разделим поровну между <tex>p</tex> процессорами. | ||
* '''Шаг 2''' На каждом процессоре запускам [[Быстрая сортировка|быструю сортировку]]. | * '''Шаг 2''' На каждом процессоре запускам [[Быстрая сортировка|быструю сортировку]]. | ||
Строка 12: | Строка 12: | ||
* '''Шаг 5''' Формируем массив разделителей из элементов вспомогательного массива под индексами <tex dpi=145> p + [\frac {p} {2}] - 1, 2p + [\frac {p}{2}] - 1,...,(p-1)p + [\frac {p}{2}] - 1</tex>. | * '''Шаг 5''' Формируем массив разделителей из элементов вспомогательного массива под индексами <tex dpi=145> p + [\frac {p} {2}] - 1, 2p + [\frac {p}{2}] - 1,...,(p-1)p + [\frac {p}{2}] - 1</tex>. | ||
* '''Шаг 6''' Делим данные в процессорах с помощью массива разделителей следующим образом. Пусть <tex>a_1, a_2,..., a_j</tex> {{---}} разделители. Тогда данные в каждом процессоре разобьём на группы элементов, попадающие в соответствующие полуинтервалы <tex>(-\infty,a_1],(a_1,a_2],...,(a_j,+\infty)</tex>. | * '''Шаг 6''' Делим данные в процессорах с помощью массива разделителей следующим образом. Пусть <tex>a_1, a_2,..., a_j</tex> {{---}} разделители. Тогда данные в каждом процессоре разобьём на группы элементов, попадающие в соответствующие полуинтервалы <tex>(-\infty,a_1],(a_1,a_2],...,(a_j,+\infty)</tex>. | ||
− | * '''Шаг 7''' Сливаем соответствующие группы элементов в массивы. Слияние будем производить поочерёдно, то есть сначала сольём первую группу со второй потом результат с третей и так далее. В итоге получим | + | * '''Шаг 7''' Сливаем соответствующие группы элементов в массивы. Слияние будем производить поочерёдно, то есть сначала сольём первую группу со второй потом результат с третей и так далее. В итоге получим отсортированный набор данных. |
* '''Шаг 8''' Данные из процессоров поочерёдно записываем в исходный массив. Данные отсортированы. | * '''Шаг 8''' Данные из процессоров поочерёдно записываем в исходный массив. Данные отсортированы. | ||
− | * Конец | + | * Конец. |
== Пример == | == Пример == |
Версия 16:32, 12 июня 2014
Содержание
Описание
Parallel Sorting by Regular Sampling — параллельная сортировка, разработанная Ханмао Ши, Рисажем Канселом и Джонатаном Шеффером в 1992 году. Имеет два преимущества по сравнению с быстрой сортировкой:
- сохраняет размер списка более сбалансированным на протяжении всего процесса
- избегает повторных перестановок ключей
Алгоритм
- Начало.
- Шаг 1 Исходный массив в элементов разделим поровну между процессорами.
- Шаг 2 На каждом процессоре запускам быструю сортировку.
- Шаг 3 Формируем вспомогательный массив из элементов каждого процессора под индексами .
- Шаг 4 Сортируем вспомогательный массив с помощью быстрой сортировки.
- Шаг 5 Формируем массив разделителей из элементов вспомогательного массива под индексами .
- Шаг 6 Делим данные в процессорах с помощью массива разделителей следующим образом. Пусть — разделители. Тогда данные в каждом процессоре разобьём на группы элементов, попадающие в соответствующие полуинтервалы .
- Шаг 7 Сливаем соответствующие группы элементов в массивы. Слияние будем производить поочерёдно, то есть сначала сольём первую группу со второй потом результат с третей и так далее. В итоге получим отсортированный набор данных.
- Шаг 8 Данные из процессоров поочерёдно записываем в исходный массив. Данные отсортированы.
- Конец.
Пример
Количество элементов
, количество процессоров . Исходный набор данных::
Описание этапа | 1 процессор | 2 процессор | 3 процессор |
---|---|---|---|
Разделение между процессорами | 15 46 48 93 39 6 72 91 14 | 36 69 40 89 61 97 12 21 54 | 53 97 84 58 32 27 33 72 20 |
После сортировки частей | 6 14 15 39 46 48 72 91 93 | 12 21 36 40 54 61 69 89 97 | 20 27 32 33 53 58 72 84 97 |
Выбор элементов | 6 14 15 39 46 48 72 91 93 | 12 21 36 40 54 61 69 89 97 | 20 27 32 33 53 58 72 84 97 |
Описание этапа | Данные |
---|---|
Выбранные элементы | 6 39 72 12 40 69 20 33 72 |
После сортировки | 6 12 20 33 39 40 69 72 72 |
Выбор элементов | 6 12 20 33 39 40 69 72 72 |
Разделители | 33 69 |
Описание этапа | 1 процессор | 2 процессор | 3 процессор | ||||||
---|---|---|---|---|---|---|---|---|---|
После сортировки частей | 6 14 15 | 39 46 48 | 72 91 93 | 12 21 | 36 40 54 61 69 | 89 97 | 20 27 32 33 | 53 58 | 72 84 97 |
После обмена данными | 6 14 15 | 12 21 | 20 27 32 33 | 39 46 48 | 36 40 54 61 69 | 53 58 | 72 91 93 | 89 97 | 72 84 97 |
После слияния | 6 12 14 | 15 20 21 | 27 32 33 | 36 39 40 | 46 48 53 | 54 58 61 69 | 72 72 | 84 89 91 | 93 97 97 |
Анализ
При быстрой сортировки, а так же учитывая, что их количество порядка , то можно сказать, что они сортируются за .
элементах и процессорах начальная сортировка выполнится за . Выбор порядка элементов в каждом процессоре произойдёт за , их сортировать мы будем с помощьюПосле обмена данными будет произведено слияние
Откуда получаем итоговую асимптотику:
Что равно:
.