Изменения

Перейти к: навигация, поиск

Матроид Вамоса

89 байт убрано, 16:25, 16 июня 2014
Нет описания правки
* Все циклы матроида Вамоса имеют размер по меньшей мере равный его [[Определение_матроида| рангу]](максимальный размер независимого множества).
* Матроид Вамоса изоморфен своему [[Двойственный_матроид | двойственному матроиду]]. Однако он не самодвойственен, так как это требует нетривиальную перестановку элементов.
* Матроид Вамоса не представим ни над каким полем. Это значит, что не существует векторного пространства и системы из восьми векторов в нем, таких что матроид линейной независимости этих векторов изоморфен матроиду Вамоса. То есть матроид Вамоса не является [[Примеры_матроидов#.D0.9C.D0.B0.D1.82.D1.80.D0.B8.D1.87.D0.BD.D1.8B.D0.B9_.D0.BC.D0.B0.D1.82.D1.80.D0.BE.D0.B8.D0.B4|матричным]].
* [[Многочлен_Татта | Многочлен Татта]] матроида Вамоса равен <math>x^4+4x^3+10x^2+15x+5xy+15y+10y^2+4y^3+y^4.</math>
={{Теорема|statement= Матроид Вамоса не представим ни над каким полем - доказательство =. Это значит, что не существует векторного пространства и системы из восьми векторов в нем, таких что матроид линейной независимости этих векторов изоморфен матроиду Вамоса. То есть матроид Вамоса не является [[Примеры_матроидов#.D0.9C.D0.B0.D1.82.D1.80.D0.B8.D1.87.D0.BD.D1.8B.D0.B9_.D0.BC.D0.B0.D1.82.D1.80.D0.BE.D0.B8.D0.B4|матричным]]|proof=
Предположим, что существует изоморфный V векторный матроид <tex>M = \langle E, J \rangle</tex>, где <tex>E = \{x1, x2, {{...}} , x8 \}</tex>, и для каждого <tex>i</tex> вектор <tex>x_i</tex> соответствует элементу <tex>i</tex> матроида Вамоса.
то есть векторы <tex>\{x3, x4, x5, x7\}</tex> линейно зависимы, что противоречит условию.
}}
== Источники информации ==
Анонимный участник

Навигация