Матроид Вамоса — различия между версиями
(→Свойства) |
|||
Строка 1: | Строка 1: | ||
[[Файл:Vamos_matroid_N.png|thumb|300px|right]] | [[Файл:Vamos_matroid_N.png|thumb|300px|right]] | ||
− | '''Матроид Вамоса''' или '''куб Вамоса''' {{---}} это матроид над | + | '''Матроид Вамоса''' или '''куб Вамоса''' {{---}} это матроид над восьмиэлементным множеством, который не изоморфен матричному ни над каким полем. Он назван в честь английского математика '''Питера Вамоса''' ('''Peter Vámos'''), который первым описал его в неопубликованной рукописи в 1968. |
== Задание матроида == | == Задание матроида == | ||
Строка 8: | Строка 8: | ||
== Доказательство матроидной природы == | == Доказательство матроидной природы == | ||
− | Сначала убедимся в том, что перед нами действительно матроид. | + | Сначала убедимся в том, что перед нами действительно матроид. Реально нуждается в проверке лишь тот факт, что если <tex>A</tex> и <tex>B</tex> независимые множества и <tex>|B| = 3</tex>, <tex>|A| = 4</tex>, то в <tex>A</tex> найдется такой элемент <tex>e</tex>, что <tex>B \cup \{e\}</tex> {{---}} независимое множество. Когда <tex>B \subset A</tex>, это очевидно. В противном же случае множество <tex> A \setminus B</tex> содержит по меньшей мере два различных элемента. Обозначим их через <tex>e_1</tex> и <tex>e_2</tex>. Теперь осталось заметить, что из множеств <tex>B \cup \{e_1\}</tex> и <tex>B \cup \{e_2\}</tex> хотя бы одно независимое, так как по условию нет двух зависимых множеств из четырех элементов, отличающихся одним элементом. |
− | |||
== Свойства == | == Свойства == | ||
− | * Все циклы матроида Вамоса имеют размер по меньшей мере равный его [[Определение_матроида| рангу]](максимальный размер независимого множества). | + | * Все циклы матроида Вамоса имеют размер по меньшей мере равный его [[Определение_матроида| рангу]] (максимальный размер независимого множества). |
* Матроид Вамоса изоморфен своему [[Двойственный_матроид | двойственному матроиду]]. Однако он не самодвойственен, так как это требует нетривиальную перестановку элементов. | * Матроид Вамоса изоморфен своему [[Двойственный_матроид | двойственному матроиду]]. Однако он не самодвойственен, так как это требует нетривиальную перестановку элементов. | ||
* [[Многочлен_Татта | Многочлен Татта]] матроида Вамоса равен <math>x^4+4x^3+10x^2+15x+5xy+15y+10y^2+4y^3+y^4.</math> | * [[Многочлен_Татта | Многочлен Татта]] матроида Вамоса равен <math>x^4+4x^3+10x^2+15x+5xy+15y+10y^2+4y^3+y^4.</math> | ||
Строка 20: | Строка 19: | ||
|proof= | |proof= | ||
− | Предположим, что существует изоморфный V векторный матроид <tex>M = \langle E, J \rangle</tex>, где <tex>E = \{x1, x2, {{...}} , x8 \}</tex>, и для каждого <tex>i</tex> вектор <tex>x_i</tex> соответствует элементу <tex>i</tex> матроида Вамоса. | + | Предположим, что существует изоморфный <tex>V</tex> векторный матроид <tex>M = \langle E, J \rangle</tex>, где <tex>E = \{x1, x2, {{...}} , x8 \}</tex>, и для каждого <tex>i</tex> вектор <tex>x_i</tex> соответствует элементу <tex>i</tex> матроида Вамоса. |
Множество <tex>\{x1, x2, x3, x4\}</tex> является базисом <tex>M</tex>. Запишем координаты каждого вектора в этом базисе: <tex>x_i = (a_{i1}, a_{i2}, a_{i3}, a_{i4})</tex>. Для дальнейшего нам понадобятся также векторы <tex>y_i = (a_{i1}, a_{i2}, 0, 0)</tex> и <tex>z_i = (0, 0, a_{i3}, a_{i4})</tex>, где <tex>i = 1, 2, {{...}} , 8</tex>. | Множество <tex>\{x1, x2, x3, x4\}</tex> является базисом <tex>M</tex>. Запишем координаты каждого вектора в этом базисе: <tex>x_i = (a_{i1}, a_{i2}, a_{i3}, a_{i4})</tex>. Для дальнейшего нам понадобятся также векторы <tex>y_i = (a_{i1}, a_{i2}, 0, 0)</tex> и <tex>z_i = (0, 0, a_{i3}, a_{i4})</tex>, где <tex>i = 1, 2, {{...}} , 8</tex>. | ||
Ввиду линейной зависимости векторов <tex>x1, x2, x5, x6</tex> получаем равенство нулю определителя, составленного из координат этих векторов: | Ввиду линейной зависимости векторов <tex>x1, x2, x5, x6</tex> получаем равенство нулю определителя, составленного из координат этих векторов: |
Версия 16:45, 16 июня 2014
Матроид Вамоса или куб Вамоса — это матроид над восьмиэлементным множеством, который не изоморфен матричному ни над каким полем. Он назван в честь английского математика Питера Вамоса (Peter Vámos), который первым описал его в неопубликованной рукописи в 1968.
Задание матроида
Пусть
. Матроид Вамоса удобно задать, назвав все его зависимые множества: это все подмножества , в которых не менее пяти элементов, а также .Доказательство матроидной природы
Сначала убедимся в том, что перед нами действительно матроид. Реально нуждается в проверке лишь тот факт, что если
и независимые множества и , , то в найдется такой элемент , что — независимое множество. Когда , это очевидно. В противном же случае множество содержит по меньшей мере два различных элемента. Обозначим их через и . Теперь осталось заметить, что из множеств и хотя бы одно независимое, так как по условию нет двух зависимых множеств из четырех элементов, отличающихся одним элементом.Свойства
- Все циклы матроида Вамоса имеют размер по меньшей мере равный его рангу (максимальный размер независимого множества).
- Матроид Вамоса изоморфен своему двойственному матроиду. Однако он не самодвойственен, так как это требует нетривиальную перестановку элементов.
- Многочлен Татта матроида Вамоса равен
Теорема: |
Матроид Вамоса не представим ни над каким полем. Это значит, что не существует векторного пространства и системы из восьми векторов в нем, таких что матроид линейной независимости этих векторов изоморфен матроиду Вамоса. То есть матроид Вамоса не является матричным. |
Доказательство: |
Предположим, что существует изоморфный векторный матроид , где , и для каждого вектор соответствует элементу матроида Вамоса. Множество является базисом . Запишем координаты каждого вектора в этом базисе: . Для дальнейшего нам понадобятся также векторы и , где . Ввиду линейной зависимости векторов получаем равенство нулю определителя, составленного из координат этих векторов:
отсюда
то есть векторы и линейно зависимы. Заметим, что вектор ненулевой (иначе были бы линейно зависимыми векторы , а у нас любые три вектора линейно независимые) . Поэтому для некоторого скаляра (то есть элемента числового поля, над которым рассматривается линейное пространство) имеет место равенство . Точно так же из линейной зависимости четвёрок векторов получаем соответственно равенства , где греческими буквами обозначены некоторые скаляры.Наконец, используем линейную зависимость векторов . С помощью найденных соотношений будем преобразовывать определитель, составленный из координат этих векторов (при этом вместо строк определителя для наглядности записываем поначалу соответствующие векторы):
Теперь заметим, что то есть векторы (в противном случае линейно зависимыми будут векторы и , а (иначе линейно зависимы векторы и ) . Поэтому равен нулю один из определителей или , например - первый из них. Но тогда линейно зависимы, что противоречит условию. |