Алгоритм Ландау-Вишкина (k несовпадений) — различия между версиями
Margarita (обсуждение | вклад) (→Процедура merge) |
Margarita (обсуждение | вклад) (→Пример) |
||
Строка 160: | Строка 160: | ||
| '''2''' || 1 || 2 || 3 || tram || etri | | '''2''' || 1 || 2 || 3 || tram || etri | ||
|- | |- | ||
− | | '''3''' || 3 || 4 || style="background:# | + | | '''3''' || 3 || 4 || style="background:#6262ff"| 5 || '''tr'''am || '''tr'''ip |
|- | |- | ||
| '''4''' || 1 || 2 || 3 || tram || ripp | | '''4''' || 1 || 2 || 3 || tram || ripp | ||
Строка 174: | Строка 174: | ||
| '''9''' || 1 || 2 || 3 || tram || dtra | | '''9''' || 1 || 2 || 3 || tram || dtra | ||
|- | |- | ||
− | | '''10''' || 4 || style="background:# | + | | '''10''' || 4 || style="background:#6262ff"| 5 || style="background:#6262ff"| 5 || '''tra'''m || '''tra'''p |
|} | |} | ||
{| class="wikitable" cellpadding="4" border="1" style="border-collapse: collapse; text-align: center;" | {| class="wikitable" cellpadding="4" border="1" style="border-collapse: collapse; text-align: center;" |
Версия 17:57, 16 июня 2014
Постановка задачи: Дано число
текст и образец , . Требуется найти все подстроки текста длины , с не более чем несовпадающими символами с образцом. Эту задачу решает алгоритм Ландау-Вишкина (k несовпадений) (англ.Landau-Vishkin Algorithm)Содержание
Алгоритм
Идея
При анализе используется двумерный массив несовпадений текста
, содержащий информацию о несовпадениях текста с образцом. По завершении анализа в его -й строке содержатся позиции в первых несовпадений между строками и . Таким образом, если , то , и это -е несовпадение между и , считая слева направо. Если число несовпадений с подстрокой меньше , то, начиная с , элементы -й строки равны значению по умолчанию .Заметим, если
, то подстрока отличается от образца не более, чем на символов, и, таким образом, является решением задачи.Затем образец сканируется параллельно с текстом слева на права по одному символу за раз. На итерации
с образцом сравнивается подстрока . - обозначим самую правую позицию в тексте, достигнутую за предыдущие итерации, то есть является максимальным из чисел , где . Если , в присваивается результат работы , которая находит количество несовпадений между и . Если не превышает , вызывается процедура , которая сравнивает подстроки и , где изменяется таблица текстовых несовпадений. Переменная будет рассмотренна ниже.
tm[0...n-m][1...k+1] = m+1 // инициализация r = 0 j = 0 for i = 0 to n - m b = 0 if i < j b = merge(i, r, j) if b < k + 1 r = i extend(i, j, b)
|
Процедура extend
Рассмотрим процедуру
подробнее. Она сравнивает подстроки и , в случае несовпадения увеличивается и таблица текстовых несовпадений обновляется. Это происходит пока либо не будет найдено несовпадений (учитывая несовпадения, которые были найдены раньше на -ой итерации), либо не будет достигнуто с не больше чем несовпадениями, то есть найдено вхождение образца, начинающееся с .
extend(i, j, b) while (b < k + 1) and (j - i < m) j++ if y[j] != x[j-1] b++ tm[i][b] = j - i
|
Процедура merge
Рассмотрим процедуру
подробнее. Она находит количество несовпадений между и и устанавливает b равным найденному числу, при этом используется полученая ранее информация. Введем - это строка таблицы несовпадений, в которой есть информация о несовпадениях, полученных при совмещении начала образца и . содержит текущий номер самой правой из проверенных на настоящий момент позиций текста. Поэтому при обработки построки начинающейся с , можно учитывать информацию в -ой строке , которая содержит информацию о сопоставлении образца с . Подходящими значениями из таблицы несовпадений являются, таким образом, , где – это наименьшее из целых чисел, для которых . Однако, следует учитывать тот факт, что эти несовпадения соответствуют началу образца, выравниваемому с , в то время как текущая позиция образца выровнена с – разница в мест.Также в алгоритме используется двумерный массив несовпадений образца
, генерируемой на стадии предварительной обработки образца. В нем содержатся позиции несовпадения образца с самим собой при различных сдвигах, аналогично , то есть в -ой строке содержитатся позиции внутри первых несовпадений между подстроками и . Таким образом, если , то , и это -е несовпадение между и слева направо. Если число несовпадений между этими строками меньше , то, начиная с , элементы -й строки равны , значению по умолчанию. Построение будет подробнее рассмотренно позднее.Таким образом, для
интерес представляет строка таблицы несовпадений образца, причем используются значения , где – самое правое несовпадение в , такое, что , так как требуются только несовпадения в подстроке .Чтобы использовать упомянутую информацию в процедуре
, рассмотрим в тексте позицию , находящуюся в диапазоне, //todo. Рассмотрим следующие условия для позиции :Условие A: когда символы
и совмещены, позиция в тексте соответствует предварительно выявленному несовпадению между образцом и текстом, то есть , и это несовпадение номер , где , то есть .Условие B: для двух копий образца, со сдвигом относительно друг друга
, совмещенных с текстом так, что их начальные символы лежат, соответственно, над и , позиция соответствует несовпадению между двумя образцам, то есть . Это -е несовпадение при этом сдвиге, где , то есть = .Вспомним, что нас интересует, совпадает ли символ текста в позиции
с соответствующими символом образца, когда совмещен с , то есть верно ли, что . Рассмотрим этот вопрос при разных комбинациях указанных выше условий.Случай 1. !A and !B: То есть,
и , откуда . Нет необходимости сравнивать символ текста с символом образца, так как ясно, что в этой позиции они совпадают.Случай 2. (A and !B) or (!A and B): В любом случае
(если лишь условие истинно, то и , откуда , с другой стороны, если выполнено только условие , то и , и опять, ). Как и в предыдущем случае, нет необходимости сравнивать символ текста с символом образца, так как известно, что они не совпадают.Случай 3. A and B: В этом случае мы ничего не можем сказать о том, совпадают ли символы
и , поэтому их надо сравнить.Возвращаемся к процедуре merge. В случае 2, или если в случае 3 выявлено несовпадение символов, необходимо увеличить количество несовпадений символов
на единицу и обновить . Соответствующими значениями таблицы для являются и . Переменные и в начале устанавливаются равными индексам первых элементов этих двух массовов, соответственно, и последовательно увеличиваются.Условия окончания работы процедуры следующие:
- Eсли , то для случая, когда образц расположен относительно текста так, что совмещен с , обнаружено несовпадение, поэтому из процедуры можно выйти.
- Bспомним, что самая правая из интересующих нас позиций в , а именно, , равна , если , поэтому будет уже использовано для предыдущего значения , а именно, , и поэтому позиция должна быть пропущена. Следовательно, в этом случае также можно выйти из процедуры.
- Процедуру можно прервать, если и . Если выполняется вторая часть этого условия, то равняется , и соответствует суммам для последующих значений вплоть до . В этом случае процедура может быть прервана, если выполняется также первая часть приведенного условия, так как она указывает, что позиция текста фактически пропущена.
Остается показать, что число позиций несовпадений в таблице несовпадений образца достаточно для того, чтобы
нашла все, или, если их больше , первые несовпадений для . Это можно показать следующим образом. Условие A выполняется не больше чем для позиции текста в диапазоне . Условие B выполняется для некоторого неизвестного числа позиций в этом же интервале. Строка в таблице несовпадений образца, , содержит не больше чем позиций несовпадений между двумя копиями образца, с соответствующим сдвигом . Если , то таблица содержит все позиции несовпадения образца самим с собой, у которых условие B выполняется для позиций текста в интервале . С другой стороны, если , то таблица может дать позиций текста в диапазоне , для которых выполняется условие B. Поскольку , в диапазоне имеется до позиций текста, для которых выполняется условие A. Таким образом, в худшем случае может быть позиций, для которых имеет место случай 3, и которые требуется сравнить напрямую. Остается по крайней мере позиций, удовлетворяющих условию B, но не условию A (случай 2), что является достаточным, чтобы заключить, что для данного положения образца относительно текста имеется не меньше несовпадений между текстом и образцом.
merge(i, r, j, b) u = 1 v = q while (b < k + 1) and (v < k + 2) and (i + pm[i - r][u] < j or tm[r][v] != m + 1) if i + pm[i - r][u] > r + tm[r][v] // Случай 2, условие A b++ tm[i][b] = tm[r][v] - (i - r) v++ else if i + pm[i - r][u] < r + tm[r, v] // Случай 2, условие B b++ tm[i][b] = pm[i - r][u] u++ else // Случай 3 (?//todo) I + PM[I - R, U] = R + TM[R, V] if x[ pm[i-r][u] ] != y[ i+pm[i-r][u] ] b++ tm[i][b] = pm[i - r][u] u++ v++
|
Построение pm
Теперь осталось только обратиться к вычислению таблицы несовпадений шаблона на стадии предварительных вычислений. Не теряя общности, можно предположить, что
является некоторой степенью . В алгоритме предварительной обработки используется разбиение множества из строк на следующие подмножеств:
Алгоритм состоит из
этапов. На этапе , где , вычисляются строки в множестве , где множество – это .Метод, используемый для вычисления этой таблицы, основан на методе, используемом на стадии анализа текста. Рассмотрим алгоритм для этапа
. На стадии входами для алгоритма анализа образца являются подстроки образца и , которые трактуются здесь, соответственно, как образец и текст, и массив , содержащий выходы предыдущих стадий. (Число элементов в строках подмассива будет объяснено позже). Выходы стадии вводятся в //todo. За исключением стадии , на которой находят до несовпадений, на стадии для каждой строки требуется найти до несовпадений, а не до , как в алгоритме анализа текста.
pm[2^(h-1)...2^h-1][1...min(2^log(m-1)2k-1, m-2^(h))] = m+1 r = 2^(h-1) j = 2^(h-1) for i = 2^(h-1) to 2^h - 1 b = 0 if i < j merge(I, R, J, B) if b < min(2^log(m-1)2k-1, m-2^(h)) r = i extend(i, j, b)
|
Оценка работы
Теперь исследуем затраты времени на анализ текста. Если исключить вызовы процедур
и , каждая из итераций цикла анализа текста выполняется за фиксированное время, что дает в общей сложности время . Общее число операций, выполняемых процедурой во время вызовов равно , так как она проверяет каждый символ текста не больше одного раза. Процедура при каждом вызове обрабатывает вектора и , которые в сумме имеют элементов. Время работы можно рассчитать, соотнеся операции с фиксированным временем с каждым из этих входов, что дает время счета для каждого вызова, равное . Таким образом, можно видеть, что общее время анализа текста составляет .Рассмотрим построение
Используя аргументы, аналогичные применявшимся при проверке корректности процедуры merge, можно показать, что для нахождения требуемого количества несовпадений на стадии s требуется позиций, для которых выполняется условие B, и в особом случае, а именно, на стадии , требуется таких позиций.На каждой стадии
из стадий анализа шаблона цикл производит итераций . Если не считать время работы процедур и , каждая итерация требует фиксированного времени. Для всех итераций на шаге процедуре требуется время . Ранее было показано, что время работы пропорционально числу искомых несовпадений. Таким образом, каждый вызов занимает время , что равно . Таким образом, общее время для стадии равно = . Проведя суммирование по всем стадиям, получаем общее время счета (//todo). Таким образом, общие затраты времени, включающие предварительную обработку шаблона и анализ текста, равны .Пример
Пусть
, , .tm | 1 | 2 | 3 | x[1..m] | y[i+1..i+m] |
0 | 2 | 3 | 4 | tram | thet |
1 | 1 | 2 | 3 | tram | hetr |
2 | 1 | 2 | 3 | tram | etri |
3 | 3 | 4 | 5 | tram | trip |
4 | 1 | 2 | 3 | tram | ripp |
5 | 1 | 2 | 3 | tram | ippe |
6 | 1 | 2 | 3 | tram | pped |
7 | 1 | 2 | 3 | tram | pedt |
8 | 1 | 2 | 3 | tram | edtr |
9 | 1 | 2 | 3 | tram | dtra |
10 | 4 | 5 | 5 | tram | trap |
tm | 1 | 2 | 3 | 4 | 5 | x[1..m-i] | x[i+1..m] |
1 | 1 | 2 | 3 | 5 | 5 | tra | ram |
2 | 1 | 2 | 5 | 5 | 5 | tr | am |
3 | 1 | 5 | 5 | 5 | 5 | t | m |