Построение FIRST и FOLLOW — различия между версиями
Shersh (обсуждение | вклад) (Новая страница: «{{В разработке}} Для данной LL(1)-грамматики оказы...») |
Shersh (обсуждение | вклад) (→Построение FOLLOW) |
||
| Строка 57: | Строка 57: | ||
== Построение FOLLOW == | == Построение FOLLOW == | ||
{{TODO | t = Пример с арифметическими выражениями}} | {{TODO | t = Пример с арифметическими выражениями}} | ||
| − | + | ||
| − | |||
| − | |||
| − | |||
== См. также == | == См. также == | ||
== Примечания == | == Примечания == | ||
Версия 20:53, 28 июня 2014
Для данной LL(1)-грамматики оказывается возможным построить нисходящий рекурсивный парсер, который по слову сможет построить его дерево разбора в грамматике или сказать, что слово не принадлежит языку грамматики. Более того, становится возможной даже автоматическая генерация парсеров для таких грамматик[1].
Чтобы написать парсер для LL(1)-грамматики, необходимо построить множества и , после чего по ним можно составить таблицу синтаксического анализатора.
Содержание
Построение FIRST
Для построения воспользуемся несколькими леммами, которые следуют прямо из определения. Пусть — цепочки из терминалов и нетерминалов, — символ из алфавита.
| Лемма (1): |
Данная лемма означает, что в множество правила , где — произвольный терминал или нетерминал, — нужно добавить , если для всех верно, что .
| Лемма (2): |
Псевдокод
Алгоритм строит для каждого терминала грамматики отображение в множество символов. Перед запуском алгоритма необходимо избавиться от бесполезных символов. Изначально каждое правило отображается в пустое множество.
function constructFIRST():
for
changed = true
while changed
changed = true
for
changed = true if изменился
| Утверждение: |
Приведённый алгоритм правильно строит множество для данной грамматики. |
|
Алгоритм на каждом шаге использует леммы, чтобы построить списки для каждого нетерминала. Поэтому он добавит только те терминалы, которые на самом деле лежат в .
Покажем, что алгоритм найдёт все символы из множества . Предположим, что в грамматике возможен вывод , и алгоритм не включил в . Докажем индукцией по числу шагов , что этого не может быть. Пусть за шагов алгоритм добавит символы в множество для каждого нетерминала , если . База индукции для числа шагов верна, если считать, что для всех терминалов нам известны . Если алгоритм корректно отрабатывает на -ом шаге, то он правильно отработает их на -ом шаге, потому что
Для алгоритм правильно построил по предположению индукции, а для он правильно построит по леммам, следовательно, переход доказан. К тому же алгоритм завершится за конечное число шагов, так как в для каждого нетерминала не может добавиться больше символов, чем есть в алфавите. |
Построение FOLLOW
TODO: Пример с арифметическими выражениями