Контактная схема — различия между версиями
(→Построение контактных схем) |
(→Задача о минимизации контактной схемы) |
||
| Строка 45: | Строка 45: | ||
{{Определение | {{Определение | ||
|definition = | |definition = | ||
| − | '''Сложностью''' | + | '''Сложностью контактной схемы''' {{---}} число |
ее контактов. | ее контактов. | ||
}} | }} | ||
{{Определение | {{Определение | ||
| − | |definition='''Минимальная контактная схема''' - схема, имеющая наименьшую сложность среди эквивалентных ей схем. | + | |definition='''Минимальная контактная схема''' {{---}} схема, имеющая наименьшую сложность среди эквивалентных ей схем. |
}} | }} | ||
| Строка 65: | Строка 65: | ||
Поэтому любую булевую функцию можно представить контактной схемой, сложностью <tex>O(2^n)</tex> | Поэтому любую булевую функцию можно представить контактной схемой, сложностью <tex>O(2^n)</tex> | ||
}} | }} | ||
| + | |||
==См также== | ==См также== | ||
[[Реализация_булевой_функции_схемой_из_функциональных_элементов|Построение функциональной схемы]] | [[Реализация_булевой_функции_схемой_из_функциональных_элементов|Построение функциональной схемы]] | ||
Версия 21:44, 15 октября 2014
Для математического описания электротехнических устройств, состоящих из контактов и промежуточных реле, функционирующих в дискретные моменты времени применяются контактные схемы.
| Определение: |
| Контактная схема (англ. contact sheme) представляет собой ориентированный ациклический граф, на каждом ребре которого написана переменная или ее отрицание (ребра в контактных схемах называют контактами, а вершины - полюсами). |
Содержание
Принцип работы
Зафиксируем некоторые значения переменным. Тогда замкнутыми называются ребра, на которых записана , ребра, на которых записан , называются разомкнутыми. Зафиксируем две вершины и . Тогда контактная схема вычисляет некоторую функцию между вершинами и , равную на тех наборах переменных, на которых между и есть путь по замкнутым ребрам.
Построение контактных схем
Представление одного из базисов в контактных схемах
Любую булеву функцию можно представить в виде контактной схемы. Для этого необходимо привести её к ДНФ или КНФ, а затем построить, используя комбинации 3 логических элементов:
Конъюнкция
Результат конъюнкции равен тогда и только тогда, когда оба операнда равны . В применении к контактным схемам это означает, что последовательное соединение полюсов соответствует операции конъюнкции.
Дизъюнкция
Результат дизъюнкции равен только в случае, когда оба операнда равны . Несложно догадаться, что в контактных схемах эта операция соответствует параллельному соединению полюсов.
Отрицание
Отрицание - это унарная операция, поэтому, чтобы показать её на контактной схеме достаточно написать над контактом знак отрицания.
Примеры построения некоторых функций
Xor
Медиана трех
Задача о минимизации контактной схемы
| Определение: |
| Две контактные схемы называются эквивалентными, если они реализуют одну и ту же булеву функцию. |
| Определение: |
| Сложностью контактной схемы — число ее контактов. |
| Определение: |
| Минимальная контактная схема — схема, имеющая наименьшую сложность среди эквивалентных ей схем. |
Задача минимизации контактных схем состоит в том, чтобы по данной схеме найти схему , эквивалентную и имеющую наименьшую сложность.
Один из путей решения этой задачи состоит в следующем:
- Осуществляем переход от контактной схемы к её булевой функции .
- Упрощаем , то есть отыскиваем функцию (на том же базисе, что и ), равносильную и содержащую меньше вхождений операций дизъюнкции и конъюнкции. Для этой операции удобно использовать карты Карно.
- Строим схему , реализующую функцию .
| Теорема: |
Любой булеву функцию можно представить контактной схемой, сложностью |
| Доказательство: |
|
Построим дерево конъюнктов для n переменных и их отрицаний. Это дерево будет содержать контактов. Внизу дерева получится вершин. Очевидно, что каждая вершина соответствует одному конъюнкту. Если соединить часть из этих вершин с вершиной ребрами, на которых написана , то сложность полученной схемы не изменится. Поэтому любую булевую функцию можно представить контактной схемой, сложностью |
См также
Построение функциональной схемы
Ссылки
- Контактные схемы
- Encyclopedia of Math — Contact sheme
- Гаврилов Г.П., Сапоженко А.А. Задачи и упражнения по дискретной математике