Антисимметричное отношение — различия между версиями
(→Примеры антисимметричных отношений) |
|||
| Строка 28: | Строка 28: | ||
== Примеры антисимметричных отношений == | == Примеры антисимметричных отношений == | ||
| − | Примерами антисимметричных отношений являются, по определению, все отношения [[Отношение порядка|полного и частичного порядка]] (<tex> <, >, \ | + | Примерами антисимметричных отношений являются, по определению, все отношения [[Отношение порядка|полного и частичного порядка]] (<tex> <, >, \leqslant, \geqslant </tex> и другие). |
Антисимметрично отношение делимости на натуральных числах (если <tex>a \mid b</tex> и <tex>b \mid a</tex>, то <tex>a=b</tex>) | Антисимметрично отношение делимости на натуральных числах (если <tex>a \mid b</tex> и <tex>b \mid a</tex>, то <tex>a=b</tex>) | ||
| − | Отношение включения на <tex>2^U</tex>, где <tex>U</tex> {{---}} универсум, антисимметрично (<tex> A \subseteq B \wedge B \subseteq A \Rightarrow A = B</tex>). | + | Отношение включения на <tex>2^U</tex>, где <tex>U</tex> {{---}} универсум, антисимметрично (<tex> A \subseteq B \wedge B \subseteq A \Rightarrow A = B</tex>). |
== Свойства антисимметричного отношения == | == Свойства антисимметричного отношения == | ||
Версия 01:15, 16 октября 2014
Содержание
Основные определения
| Определение: |
| Бинарное отношение на множестве называется антисимметричным (англ. antisymmetric binary relation), если для любых элементов и множества из выполнения отношений и следует равенство и . |
Или эквивалентное
| Определение: |
| Бинарное отношение на множестве называется антисимметричным, если для любых неравных элементов и множества из выполнения отношения следует невыполнение отношения . |
Определение антисимметричного отношения как является избыточным (и потому неверным), поскольку из такого определения также следует антирефлексивность R.
Антисимметричность отношения не исключает симметричности. Существуют бинарные отношения:
- одновременно симметричные и антисимметричные (отношение равенства);
- ни симметричные, ни антисимметричные;
- симметричные, но не антисимметричные;
- антисимметричные, но не симметричные ("меньше или равно", "больше или равно");
Антирефлексивное антисимметричное отношение иногда называют асимметричным. Следует различать эти два понятия. Формальное определение:
| Определение: |
| Бинарное отношение на множестве называется асимметричным (англ. asymmetric binary relation), если для любых элементов и множества одновременное выполнение отношений и невозможно. |
Примеры антисимметричных отношений
Примерами антисимметричных отношений являются, по определению, все отношения полного и частичного порядка ( и другие).
Антисимметрично отношение делимости на натуральных числах (если и , то )
Отношение включения на , где — универсум, антисимметрично ().
Свойства антисимметричного отношения
Матрица смежности антисимметричного отношения может содержать единицы на главной диагонали, притом если элемент матрицы равен единице, то элемент равен нулю.
Например, если — матрица смежности отношения "" на ; — матрица смежности отношения делимости на том же множестве , то
Ориентированный граф, изображающий антисимметричное отношение, не имеет двух дуг с противоположной ориентацией между двумя различными вершинами, однако в нём могут быть петли.
Если и — некоторые антисимметричные отношения, то антисимметричными также являются отношения:
Однако объединение и композиция и могут не сохранять антисимметричности.

