Straight skeleton — различия между версиями
| Shersh (обсуждение | вклад) | Shersh (обсуждение | вклад)   (описаны почти все другие алгоритмы) | ||
| Строка 1: | Строка 1: | ||
| {{В разработке}} | {{В разработке}} | ||
| − | Существует целый класс структур типа <tex>\mathrm{skeleton}</tex>, которые описывают базовые топологические свойства объектов. Структура <tex>\mathrm{straight}\ \mathrm{skeleton}</tex> была придумала Oswin Aichholzer | + | Существует целый класс структур типа <tex>\mathrm{skeleton}</tex>, которые описывают базовые топологические свойства объектов. Структура <tex>\mathrm{straight}\ \mathrm{skeleton}</tex> была придумала Oswin Aichholzer. Она используются в различных практических задачах (проектирование крыш для зданий) и для доказательства некоторых теорем<ref>[http://en.wikipedia.org/wiki/Fold-and-cut_theorem Wikipedia {{---}} Fold-and-cut theorem]</ref>. | 
| == Топологические свойства == | == Топологические свойства == | ||
| {{Определение | {{Определение | ||
| Строка 42: | Строка 42: | ||
| == Wavefront-алгоритм == | == Wavefront-алгоритм == | ||
| − | + | Рассмотрим алгоритм построения <tex> \mathrm{straigt}\ \mathrm{skeleton}</tex> на основе мотографов. | |
| + | {{TODO | t = Алгоритм на мотографах}} | ||
| − | + | == Другие алгоритмы == | |
| − | {{ | + | Существует простой в понимании и реализации алгоритм для построения <tex> \mathrm{straigt}\ \mathrm{skeleton}</tex> на основе [[Триангуляция полигонов (ушная + монотонная)|триангуляции]], который работает за время <tex> \mathcal{O}(n^3 \log n)</tex><ref>[http://www.sthu.org/research/publications/files/eurocg2010-slides.pdf Stefan Huber, Martin Held, "Straight Skeletons and their Relation to Triangulations"]</ref>. Aichholzer смог обобщить этот алгоритм для построения <tex> \mathrm{straigt}\ \mathrm{skeleton}</tex> произвольного планарного графа<ref>[http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.33.2586 Oswin Aichholzer, Franz Aurenhammera, "Straight Skeletons for General Polygonal Figures in the Plane"]</ref>. Также автором в его оригинальной статье был представлен алгоритм построения данной структуры, базирующийся на понятии '''волнового фронта''' (англ. ''wavefront''). Этот алгоритм может быть реализован за время <tex> \mathcal{O}(n^3)</tex> с использованием <tex> \mathcal{O}(n)</tex> памяти либо с использованием [[Двоичная куча | приоритетной очереди]] за время <tex> \mathcal{O}(n^2 \log n)</tex> и <tex> \mathcal{O}(n^2)</tex> памяти<ref>[http://www.jucs.org/jucs_1_12/a_novel_type_of/Aichholzer_O.pdf Oswin Aichholzer, Franz Aurenhammera, "A Novel Type of Skeleton for Polygons"]</ref>. Известен алгоритм построения <tex> \mathrm{straight}\ \mathrm{skeleton} </tex> для [[Триангуляция полигонов (ушная + монотонная)#def_monotone_polygon|монотонных полигонов]] за время <tex> \mathcal{O}(n \log n)</tex> с использованием <tex> \mathcal{O}(n)</tex> памяти<ref>[http://www.cs.bgu.ac.il/~eurocg14/papers/paper_9.pdf Therese Biedl, Martin Held, Stefan Hubert, Dominik Kaaser, Peter Palfrader, "Straight Skeletons of Monotone Polygons"]</ref>.  | 
| − | + | Существует и более сложный алгоритм, придуманный Petr Felkel, который строит <tex> \mathrm{straight}\ \mathrm{skeleton} </tex> за время <tex> \mathcal{O}(nm + n \log n)</tex>, где <tex> n </tex> {{---}} общее число вершин в полигоне, <tex> m </tex> {{---}} число вогнутых вершин в полигоне<ref>[http://www.dma.fi.upm.es/mabellanas/tfcs/skeleton/html/documentacion/straight%20skeletons%20implementation.pdf Petr Felkel, Stepan Obdrazalek, "Straight Skeleton Implementation"]</ref>. Немного модифицированный этот алгоритм используется в открытой библиотеке вычислительной геометрии CGAL<ref>[http://cmp.felk.cvut.cz/~xobdrzal/publications/bachelorthesis.pdf Stepan Obdrazalek, "The Angular bisector network Implementation and the CGAL library"]</ref>. Однако этот алгоритм всё равно ещё достаточно медленный. В реальной жизни используют модификации этого алгоритма или более сложные алгоритмы. | |
| − | + | ||
| + | В данном конспект был (P.S. точнее, ещё будет) представлен алгоритм на основе мотографов, который придумали Stefan Huber и Martin Held. Они говорят, что даже смогли реализовать этот алгоритм, но код нигде не выкладывали. | ||
| == Примечания == | == Примечания == | ||
| Строка 55: | Строка 57: | ||
| == Источники информации == | == Источники информации == | ||
| * [http://en.wikipedia.org/wiki/Straight_skeleton Wikipedia {{---}} Straight skeleton] | * [http://en.wikipedia.org/wiki/Straight_skeleton Wikipedia {{---}} Straight skeleton] | ||
| − | |||
| * [https://liorpachter.wordpress.com/tag/straight-skeleton/ Designing roofs and drawing phylogenetic trees] | * [https://liorpachter.wordpress.com/tag/straight-skeleton/ Designing roofs and drawing phylogenetic trees] | ||
| * [http://resources.mpi-inf.mpg.de/departments/d1/teaching/ss10/Seminar_CGGC/Slides/09_Dinu_SSke.pdf Eric Berberich, "Straight Skeleton, Computational Geometry and Geometric Computing Seminar"] | * [http://resources.mpi-inf.mpg.de/departments/d1/teaching/ss10/Seminar_CGGC/Slides/09_Dinu_SSke.pdf Eric Berberich, "Straight Skeleton, Computational Geometry and Geometric Computing Seminar"] | ||
| − | |||
| [[Категория: Вычислительная геометрия]] | [[Категория: Вычислительная геометрия]] | ||
| [[Категория: Скалярное произведение и мера]] | [[Категория: Скалярное произведение и мера]] | ||
| [[Категория: Структуры данных]] | [[Категория: Структуры данных]] | ||
Версия 13:48, 26 октября 2014
Существует целый класс структур типа , которые описывают базовые топологические свойства объектов. Структура была придумала Oswin Aichholzer. Она используются в различных практических задачах (проектирование крыш для зданий) и для доказательства некоторых теорем[1].
Содержание
Топологические свойства
| Определение: | 
| Straight skeleton (Angular Bisector Network, ABN) полигона без самопересечений определяет разбиение полигона на регионы, границами которых являются стороны полигона, биссектрисы углов и отрезки, соединяющие точки пересечения биссектрис. | 
Опишем подробней, как получается такое разбиение. Мы можем представить, будто все стороны прямоугольника параллельно двигаются внутрь с одинаковой постоянной скоростью, то есть многоугольник как бы сжимается внутрь. Тогда вершины будут двигаться вдоль биссектрис , а точки пересечения биссектрис будут соединять совпавшие участки сторон прямоугольника в конце движения. В каждый момент времени от начала движения рёбер мы получаем слоистую структуру (рис 1.). На рис. 2 синим цветом выделен — множество отрезков, образованных точками пересечения при движении сторон полигона. Чем-то структура похожа на строение крыши в домах (рис. 3). И для решения этой задачи как раз и может применяться: по стенам здания необходимо спроектировать его крышу.
Процесса стягивания многоугольника продолжается до тех пор, пока происходят его топологические изменения, то есть меняется число вершин в стянутом многоугольнике, и таким образом появляются новые вершины дерева . Существуют два типа изменений, в ходе которых образуются новый вершины дерева:
- — данное изменение происходит, когда сторона многоугольника полностью стягивается, делая соседние стороны инцидентными.
- происходит, когда ребро разбивается на два новых ребра, исходящих из точки преломления старого. Такое событие происходит на биссектрисе вогнутой вершины многоугольника. И тогда стягиваемая многоугольником область разбивается на две непересекающиеся многоугольные области.
На рисунке ы изображён красным кругом, а ы — чёрным прямоугольником.
Таким образом, ы соответствуют внутренним вершинам , гранями являются области многоугольника, заметаемые сторонами многоугольника в процессе стягивания, дуги соединяют либо две внутренние вершины либо внутреннюю вершину с листом — вершиной многоугольника.
Стоит также отметить, что в общем случае ы могут быть нетривиальными. На рисунке ниже в случае в вершине совпали из вершины и ребра , а в случае совпали два а вершин и . Случаи и — простые и ы.
Свойства Straight skeleton
Из процесса построения следует, что он является планарным графом. Ранее уже упоминалось, что он также является деревом. Будем обозначать простого полигона без самопересечений , в котором вершин, как . Тогда справедливы следующие леммы:
| Лемма (1): | 
|  является деревом, содержит  граней, не более  внутренние вершины и не более  рёбер. | 
| Доказательство: | 
| Каждая грань начинается образовываться во время стягивания ребра , и даже если на ребре произошёл , сама грань не могла разделиться. Построение грани завершается, когда ребро полностью стягивается. И это ребро дальше не может появиться снова, поэтому граней в столько, сколько сторон в многоугольнике, то есть ровно . То, что является деревом, легко доказывается по индукции. База верна, когда внутренняя вершина всего одна. Тогда у листьями будут вершины многоугольника. Такой граф очевидным образом будет деревом. Если в внутренних вершин, то рассмотрим самый первый . Он закончился в какой-то внутренней вершине , у неё есть смежные листья — вершины, инцидентные этому ребру, — и из неё достижимы другие ы, с не более чем внутренними вершинами, и они являются деревьями по предположению индукцию. Тогда получаем, что для вершин тоже будет деревом.Внутренние вершины в имеют степень не меньше — простой перебор всех случаев ов (степень будет больше, если в одной вершине совпало несколько событий). Так как имеет листьев, то внутренних вершин будет не больше , а так как является деревом, то рёбер у него будет не более . | 
Wavefront-алгоритм
Рассмотрим алгоритм построения на основе мотографов.
TODO: Алгоритм на мотографах
Другие алгоритмы
Существует простой в понимании и реализации алгоритм для построения на основе триангуляции, который работает за время [2]. Aichholzer смог обобщить этот алгоритм для построения произвольного планарного графа[3]. Также автором в его оригинальной статье был представлен алгоритм построения данной структуры, базирующийся на понятии волнового фронта (англ. wavefront). Этот алгоритм может быть реализован за время с использованием памяти либо с использованием приоритетной очереди за время и памяти[4]. Известен алгоритм построения для монотонных полигонов за время с использованием памяти[5].
Существует и более сложный алгоритм, придуманный Petr Felkel, который строит за время , где — общее число вершин в полигоне, — число вогнутых вершин в полигоне[6]. Немного модифицированный этот алгоритм используется в открытой библиотеке вычислительной геометрии CGAL[7]. Однако этот алгоритм всё равно ещё достаточно медленный. В реальной жизни используют модификации этого алгоритма или более сложные алгоритмы.
В данном конспект был (P.S. точнее, ещё будет) представлен алгоритм на основе мотографов, который придумали Stefan Huber и Martin Held. Они говорят, что даже смогли реализовать этот алгоритм, но код нигде не выкладывали.
Примечания
- ↑ Wikipedia — Fold-and-cut theorem
- ↑ Stefan Huber, Martin Held, "Straight Skeletons and their Relation to Triangulations"
- ↑ Oswin Aichholzer, Franz Aurenhammera, "Straight Skeletons for General Polygonal Figures in the Plane"
- ↑ Oswin Aichholzer, Franz Aurenhammera, "A Novel Type of Skeleton for Polygons"
- ↑ Therese Biedl, Martin Held, Stefan Hubert, Dominik Kaaser, Peter Palfrader, "Straight Skeletons of Monotone Polygons"
- ↑ Petr Felkel, Stepan Obdrazalek, "Straight Skeleton Implementation"
- ↑ Stepan Obdrazalek, "The Angular bisector network Implementation and the CGAL library"




