Алгоритм Кока-Янгера-Касами разбора грамматики в НФХ — различия между версиями
Kabanov (обсуждение | вклад) м (→Псевдокод) |
Kabanov (обсуждение | вклад) м (→Асимптотика) |
||
Строка 53: | Строка 53: | ||
Проход по всем подстрокам выполняется за <tex>O(n^2)</tex>. В обработке подстроки присутствует цикл по всем правилам вывода и по всем разбиениям на две подстроки, следовательно обработка работает за <tex>O(n \cdot |\Gamma|)</tex>. В итоге получаем конечную сложность <tex>O(n^3 \cdot |\Gamma|)</tex>. | Проход по всем подстрокам выполняется за <tex>O(n^2)</tex>. В обработке подстроки присутствует цикл по всем правилам вывода и по всем разбиениям на две подстроки, следовательно обработка работает за <tex>O(n \cdot |\Gamma|)</tex>. В итоге получаем конечную сложность <tex>O(n^3 \cdot |\Gamma|)</tex>. | ||
− | Следовательно, общее время работы алгоритма - <tex>O(n^3 | + | Следовательно, общее время работы алгоритма - <tex>O(n^3 \cdot |\Gamma|)</tex>. Кроме того, алгоритму требуется память (на массив <tex>d</tex>) объемом <tex>O(n^2 \cdot |N|)</tex>, где <tex>|N|</tex> - количество [[Формальные_грамматики#Определения|нетерминалов]] грамматики. |
== См. также == | == См. также == |
Версия 23:25, 4 ноября 2014
Задача: |
Пусть дана контекстно-свободная грамматика грамматика в нормальной форме Хомского и слово . Требуется выяснить, выводится ли это слово в данной грамматике. |
Содержание
Алгоритм
Алгоритм Кока-Янгера-Касами (Cocke — Younger — Kasami algorithm, CYK - алгоритм) - универсальный алгоритм, позволяющий по слову узнать, выводимо ли оно в заданной КС-грамматике в нормальной форме Хомского. Будем решать задачу динамическим программированием. Заведем трехмерный массив d, состоящий из логических значений, и тогда и только тогда, когда из нетерминала правилами грамматики можно вывести подстроку .
Рассмотрим все пары
, где - константа и .Шаг 1. База
. В таком случае .
Инициализируем массив для всех нетерминалов, из которых выводится какой-либо символ строки
. В таком случае:- , если в грамматике присутствует правило . Иначе .
Шаг 2. Переход
.
Значения для всех нетерминалов и пар
уже вычислены, поэтому . То есть, подстроку можно вывести из нетерминала , если существует продукция вида и такое , что подстрока выводима из , а подстрока - из .Завершение
\После окончания работы значение
содержит ответ на вопрос, выводима ли данная строка в данной грамматике.Модификации
Заметим, что если массив будет хранить целые числа, а формулу заменить на
, то - количество способов получить подстроку из нетерминала .Пусть
- стоимость вывода по правилу . Тогда, если использовать формулу , то - минимальная стоимость вывода подстроки из нетерминала .Таким образом, задача о выводе в КС-грамматике в нормальной форме Хомского является обобщением задачи динамического программирования на подотрезке.
Псевдокод
boolean CYK(char[] w, list, int S) int n = length(w) boolean d[ ][n][n] for i = 1 ... n for (A w[i] ) d[A][i][i] = true for m = 1 .. n - 1 for i = 1 .. n - m int j = i + m for (A BC ) for k = i .. j - 1 d[A][i][j] = d[A][i][j] or d[B][i][k] and d[C][k + 1][j] return d[S][1][n]
Асимптотика
Обработка правил вида
в шаге 1 выполняется за .Проход по всем подстрокам выполняется за
. В обработке подстроки присутствует цикл по всем правилам вывода и по всем разбиениям на две подстроки, следовательно обработка работает за . В итоге получаем конечную сложность .Следовательно, общее время работы алгоритма - нетерминалов грамматики.
. Кроме того, алгоритму требуется память (на массив ) объемом , где - количество