Пороговая функция — различия между версиями
(→Пример) |
|||
| Строка 28: | Строка 28: | ||
|statement=Для всякой пороговой функции справедливо | |statement=Для всякой пороговой функции справедливо | ||
:<tex>[a_1,a_2,a_3,...,a_n;T]=[ka_1,ka_2,ka_3,...,ka_n;kT]</tex>, | :<tex>[a_1,a_2,a_3,...,a_n;T]=[ka_1,ka_2,ka_3,...,ka_n;kT]</tex>, | ||
| − | где k — положительное вещественное число. | + | где <tex>k</tex> — положительное вещественное число. |
|proof=Чтобы убедиться в этом достаточно записать | |proof=Чтобы убедиться в этом достаточно записать | ||
: <tex>ka_1 A_1+ka_2 A_2+...+ka_n A_n \geqslant kT</tex> | : <tex>ka_1 A_1+ka_2 A_2+...+ka_n A_n \geqslant kT</tex> | ||
Версия 19:18, 19 ноября 2014
| Определение: |
| Булева функция называется пороговой, если ее можно представить в виде , где — вес аргумента , а — порог функции ; |
Обычно пороговую функцию записывают в следующим виде: .
Содержание
Пример
Рассмотрим функцию трёх аргументов . Согласно этой записи имеем
- .
Все наборы значений аргументов , на которых функция принимает единичное (либо нулевое) значение, можно получить из соотношения вида .
- Если , то .
- Если , то .
- Если , то .
- Если , то .
- Если , то .
- Если , то .
- Если , то .
- Если , то .
Таким образом, заданная функция принимает единичное значение на наборах , , , , . Её минимальная форма имеет вид
- .
| Утверждение: |
Для всякой пороговой функции справедливо
|
|
Чтобы убедиться в этом достаточно записать |
Примеры пороговых функций
Примерами пороговых функций служат функции и . Представим функцию в виде . Докажем, что это именно пороговая функция, подставив все возможные значения аргументов:
- , то .
- , то .
- , то .
- , то .
Таблица значений совпадает с таблицей истинности функции , следовательно — пороговая функция.
Функцию представим в виде . Аналогично докажем, что это пороговая функция:
- , то .
- , то .
- , то .
- , то .
Таблица значений совпадает с таблицей истинности функции , следовательно — пороговая функция.
Пример непороговой функции
| Утверждение: |
Функция — непороговая. |
| Предположим, что — пороговая функция. При аргументах значение функции равно . Тогда по определению пороговой функции неравенство не должно выполняться. Подставляя значение аргументов, получаем, что . При аргументах и значение функции равно . Тогда по определению выполняется неравенство , подставляя в которое значения соответствующих аргументов, получаем . Отсюда следует, что и . При аргументах значение функции равно 0, следовательно неравенство выполняться не должно, то есть . Но неравенства и при положительных и одновременно выполняться не могут. Получили противоречие, следовательно, функция — непороговая. |
Значимость пороговых функций
Пороговые функции алгебры логики представляют интерес в связи с простотой технической реализации, в связи со своими вычислительными возможностями, а также благодаря возможности их обучения. Последнее свойство с успехом применяется на практике при решении плохо формализуемых задач. Пороговые функции применяются в качестве передаточных функций в искусственных нейронах, из которых состоят искусственные нейронные сети. А так как искусственный нейрон полностью характеризуется своей передаточной функцией, то пороговые функции являются математической моделью нейронов.