Изменения

Перейти к: навигация, поиск

Обсуждение участника:AKhimulya

479 байт добавлено, 01:30, 25 ноября 2014
Нет описания правки
{{Определение
|definition=Пусть дан фиксированный граф <tex>G</tex> и фиксированное число красок <tex>x</tex>. Количество способов правильной <tex>x</tex> — [[Раскраска графа|раскраски графа]] <tex>G</tex> называется '''хроматическим многочленом''' ('англ. ''chromatic polynomial'''). Обозначение: <tex>P(G,x)</tex>.
}}
== Рекуррентные формулы для хроматических многочленов ==
{{Определение
|definition='''Стягивание ребра''' (англ. ''edge contraction'') — замена концов ребра одной вершиной, соседями новой вершины становятся соседи этих концов. Будем обозначать за <tex>G/uv</tex> граф, полученный из графа <tex>G</tex> стягиванием ребра <tex>uv</tex>.}}
{{Теорема
|statement=
=== Хроматический многочлен нуль-графа ===
{{Определение
|definition='''Нуль-граф''' (пустой граф, вполне несвязный граф, ; англ. ''null graph'', ''empty graph'', ''edgeless graph'') — регулярный граф степени <tex>0</tex>, т.е. граф без рёбер.}}
<tex>P(O_{n},x)=x^{n}</tex>, так как каждую из <tex>n</tex> вершин нулевого графа <tex>O_{n}</tex> можно независимо окрасить в любой из <tex>x</tex> цветов.<br>
'''Примечание:''' Нулевой граф <tex>O_{n}</tex> также можно обозначать <tex>\overline{K_{n}}</tex> (дополнительный граф для полного графа <tex>K_{n}</tex>).
=== Хроматический многочлен простой цепи ===
Пусть <tex>T_n</tex> - простая цепь, состоящая из <tex>n </tex> вершин. Рассмотрим процесс раскраски простой цепи: первую вершину можно покрасить в один из <tex>x</tex> цветов, вторую и последующие в один из <tex>x - 1</tex> цветов (т.е. так, чтобы цвет не совпадал с предыдущей вершиной). Тогда <tex>P_{P(T_n}(, x) = x(x - 1) ^ {n - 1}</tex>.
=== Хроматический многочлен цикла ===
хроматический многочлен цикла
|statement=
Пусть <tex>C_n</tex> — цикл длины <tex>n</tex>. Тогда хроматичсекий многочлен цикла <tex>P_{P(C_n}(, x) = (x - 1)^n + (-1)^n(x - 1)</tex>.
|proof=
Рассмотрим случай <tex>n = 3</tex>: <tex>P_{P(C_3}(, x) = x(x - 1)(x - 2) = (x - 1)(x^2 - x) = (x - 1)^3 + (-1)^3(x - 1)</tex>, что удовлетворяет формулировке теоремы.<br>Пусть <tex>P_{P(С_k} , x) = (x - 1)^k + (-1)^k(x - 1)</tex>. <br>Рассмотрим случай <tex>n = k + 1</tex>. По теореме о [[#.D0.A0.D0.B5.D0.BA.D1.83.D1.80.D1.80.D0.B5.D0.BD.D1.82.D0.BD.D1.8B.D0.B5_.D1.84.D0.BE.D1.80.D0.BC.D1.83.D0.BB.D1.8B_.D0.B4.D0.BB.D1.8F_.D1.85.D1.80.D0.BE.D0.BC.D0.B0.D1.82.D0.B8.D1.87.D0.B5.D1.81.D0.BA.D0.B8.D1.85_.D0.BC.D0.BD.D0.BE.D0.B3.D0.BE.D1.87.D0.BB.D0.B5.D0.BD.D0.BE.D0.B2|рекурентной формуле для хроматических многочленов]]: <tex>P_{ P(C_{k + 1} } , x ) = P_{ P(C_{k + 1} \setminus e } , x) - P_{ P(C_{k + 1} / e }, x)</tex> (где <tex>e</tex> - любое ребро <tex>C_{k + 1}</tex>).
Заметим, что граф <tex>C_{k + 1} / e</tex> изоморфен <tex>C_k</tex>. Заметим, что граф <tex>C_{k + 1} \setminus e</tex> является [[#.D0.A5.D1.80.D0.BE.D0.BC.D0.B0.D1.82.D0.B8.D1.87.D0.B5.D1.81.D0.BA.D0.B8.D0.B9_.D0.BC.D0.BD.D0.BE.D0.B3.D0.BE.D1.87.D0.BB.D0.B5.D0.BD_.D0.BF.D1.80.D0.BE.D1.81.D1.82.D0.BE.D0.B9_.D1.86.D0.B5.D0.BF.D0.B8|простой цепью]].
Тогда <tex>P_{ P(C_{k + 1} }(, x)=P_{ P(T_{k + 1} }(, x)-P_{P(C_k}(, x)=x(x-1)^k-(x-1)^k-(-1)^k(x-1)=</tex><tex>(x-1)^{k+1}+(-1)^{k+1}(x-1)</tex>.
}}
=== Хроматический многочлен колеса ===
Граф <tex>G</tex> с <tex>n</tex> вершинами является деревом тогда и только тогда, когда <tex>P(G,x)=x(x-1)^{n-1}</tex>.
|proof=
<tex>\Rightarrow</tex><br>
Сначала покажем, что хроматический многочлен любого дерева <tex>T</tex> с <tex>n</tex> вершинами есть <tex>x(x-1)^{n-1}</tex>.
Доказательство индукцией по числу <tex>n</tex>. Для <tex>n=1</tex> и <tex>n=2</tex> результат очевиден. Предположим, что <tex>P(T',x)=x(x-1)^{n-2}</tex> для любого дерева <tex>T'</tex> с количеством вершин равным <tex>n-1</tex>. Пусть <tex>uv</tex> — ребро дерева <tex>T</tex>, такое что <tex>v</tex> является висячей вершиной. Хроматический многочлен дерева <tex>T</tex> без ребра <tex>uv</tex> равен <tex>P(T/uv,x)=x(x-1)^{n-2}</tex> по нашему предположению. Вершину <tex>v</tex> можно окрасить <tex>x-1</tex> способом, так как её цвет должен только лишь отличаться от цвета вершины <tex>u</tex>. Итого: <tex>P(T,x)=(x-1)P(T/uv,x)=x(x-1)^{n-1}</tex>.<br><tex>\Leftarrow</tex><br>
Обратно, пусть <tex>G</tex> — граф, у которого <tex>P(G,x)=x(x-1)^{n-1}</tex>. Тогда верны два следующих утверждения:
<ol>
}}
== Литература Источники информации ==
* Асанов М. О., Баранский В. А., Расин В. В. - Дискретная математика: Графы, матроиды, алгоритмы: Учебное пособие. 2-е изд., испр. и доп. - СПб.: Издательство "Лань", 2010. - 368 с.: ил. - (Учебники для вузов. Специальная литература). ISBN 978-5-8114-1068-2
* Харари Ф. — Теория графов: Изд. 4-е. - М.: Книжный дом "ЛИБРОКОМ", 2009. - 296 с. ISBN 978-5-397-00622-4
* [[wikipedia:en:Chromatic_polynomial| Wikipedia {{---}} Chromatic_polynomial]]
* [[wikipedia:ru:Хроматическое_число#.D0.A5.D1.80.D0.BE.D0.BC.D0.B0.D1.82.D0.B8.D1.87.D0.B5.D1.81.D0.BA.D0.B8.D0.B9_.D0.BC.D0.BD.D0.BE.D0.B3.D0.BE.D1.87.D0.BB.D0.B5.D0.BD| Wikipedia {{---}} Хроматический многочлен]]
[[Категория: Алгоритмы и структуры данных]]
[[Категория: Раскраски графов]]
Анонимный участник

Навигация