Изменения

Перейти к: навигация, поиск

Избыточное кодирование, код Хэмминга

22 байта добавлено, 19:23, 29 ноября 2014
Определение и устранение ошибок в общем случае
Определим <tex>d_0 = \min</tex> <math>~d(c(x),c(y))</math>, <tex>x,y \in \Sigma</tex>, <tex>x \ne y</tex>
Тогда легко понять, что код, полученный преобразованием <tex>C</tex> может исправлять <math>~[</math><texdpi = 150> {d_0-1}\over{2}</tex><math>~]</math> и обнаруживать <tex>[d_0-1]</tex> ошибок. Действительно, при любом натуральном количестве допустимых ошибок <tex>r</tex> любой код <tex>S</tex> образует вокруг себя проколотый шар таких строк <tex>S_i</tex>, что <tex>0<d(S,S_i)\leqslant r</tex>. Если этот шар не содержит других кодов (что выполняется при <tex>r<d_0</tex>) , то можно утверждать, что если в него попадает строка, то она ошибочна. Аналогично можно утверждать, что если шары всех кодов не пересекаются (что выполняется при <texdpi = 150>r \leqslant {{d_0-1}\over{2}} </tex>), то попавшую в шар строку <tex>S_i</tex> можно считать ошибочной и тождественно исправить на центр шара &mdash; строку <tex>S</tex>.<br>
[[Файл:Ham.png|350px]]

Навигация