Участник:ZeRoGerc — различия между версиями

Материал из Викиконспекты
Перейти к: навигация, поиск
(Асимптотика)
(Асимптотика)
Строка 64: Строка 64:
  
 
==Асимптотика==
 
==Асимптотика==
Поговорим об асиптотике. Снова разобьём наши перестановки на блоки по <tex>n</tex> элементов. Немного модифицируем алгоритм. Заметим, что в каждом блоке нам нужно искать максимальный элемент только один раз. В остальных случаях этим элементом будет <tex>n</tex>. Следовательно менять направление стрелок нужно тоже только один раз(в остальных случаях менять направления не нужно, так как <tex>n</tex> - подвижный элемент, а менять направление стрелок нужно только у бóльших элементов). Следовательно блок выполняется за <tex>O(n) + O(n) + O(n) = O(n)</tex>. Всего блоков <tex> -\:(n - 1)!</tex>. Общая асимптотика <tex>O(n) * (n - 1)! = O(n!)</tex>.
+
Поговорим об асиптотике. Снова разобьём наши перестановки на блоки по <tex>n</tex> элементов. Немного модифицируем алгоритм. Заметим, что в каждом блоке нам нужно искать максимальный элемент только один раз. В остальных случаях этим элементом будет <tex>n</tex>. Следовательно, менять направление стрелок нужно тоже только один раз(в остальных случаях менять направления не нужно, так как <tex>n</tex> - подвижный элемент, а менять направление стрелок нужно только у бóльших элементов). Следовательно, блок выполняется за <tex>O(n) + O(n) + O(n) = O(n)</tex>. Всего блоков <tex> -\:(n - 1)!</tex>. Общая асимптотика <tex>O(n) * (n - 1)! = O(n!)</tex>.

Версия 22:30, 29 ноября 2014

Алгоритм Джонсона-Троттера(англ. Johnson-Trotter algorithm) - алгоритм генерации всех перестановок из [math]n[/math] элементов. Причём каждая перестановка отличаются от предыдущей транспозицией двух соседних элементов.

Идея

Сопоставим каждому элементу перестановки [math]p[i][/math] направление [math]d[i][/math]. Будем указывать направление при помощи стрелок ("влево") или ("вправо"). Назовём элемент подвижным, если по направлению стелки стоит элемент меньше его. Например, для [math] p = \{1, 3, 2, 4, 5\},\;d = \{[/math]←, →, ←, →, ←[math]\}[/math], подвижными являются элементы 3 и 5. На каждой итерации алгоритма будем искать наибольший подвижный элемент и менять местами с элементом, который стоит по направлению стрелки. После чего поменяем направление стрелок на противоположное у всех элементов больших текущего. Изначально [math] p = \{1, ... ,n\},\;d = \{[/math]←, ... ,←[math]\}[/math].

Пример работы алгоритма для n = 3

  • [math] p = \{1, 2, \textbf{3}\}\;\;\;d = \{[/math]←, ←, ←[math]\}[/math]
  • [math] p = \{1, \textbf{3}, 2\}\;\;\;d = \{[/math]←, ←, ←[math]\}[/math]
  • [math] p = \{3, 1, \textbf{2}\}\;\;\;d = \{[/math]←, ←, ←[math]\}[/math]
  • [math] p = \{\textbf{3}, 2, 1\}\;\;\;d = \{[/math]→, ←, ←[math]\}[/math]
  • [math] p = \{2, \textbf{3}, 1\}\;\;\;d = \{[/math]←, →, ←[math]\}[/math]
  • [math] p = \{2, 1, 3\}\;\;\;d = \{[/math]←, ←, →[math]\}[/math]

Псевдокод

 //Элементы нумеруются начиная с 1  
p = {1, ... , n}
d = {←, ... , ←}
while (true){
  print(); // печатаем текущую перестановку
  id = -1; // индекс наибольшего подвижного элемента 
  for i = (1 .. n){
     if (p[i] - подвижный) and ((id = -1) or (p[i] > p[id]))
       id = i
  }
  if (id = -1) break // не нашли подвижного элемента
  for i = (1 .. n){
    if (p[i] > p[id]) 
      reverse(d[i]) // меняем направление стрелки  
  }
  swap(id) //меняем элемент p[id], d[id] c элементом по направлению стелки
}

Доказательство корректности

Очевидно, что требование о том, что каждая генерируемая перестановка отличается от предыдущей транспозицией двух соседних элементов выполнено исходя из самого алгоритма. Осталось доказать, что таким образом мы сгенерируем все перестановки.

Будем использовать обозначения:

  • [math](a,[/math][math])[/math] [math] - [/math] элемент с заданным направлением(компонента).
  • [math]P[i][/math] [math] - [/math] перестановка с номером [math]i[/math].
  • [math]P[i]\backslash\{a\}\;[/math] [math] - [/math] перестановка с номером [math]i[/math] без элемента [math]a[/math].
Утверждение:
Число [math]n[/math] в перестановке не является подвижным элементом тогда и только тогда, когда первая компонента перестановки есть [math](n,[/math][math])[/math] или последняя компонента есть [math](n,[/math][math])[/math].


Лемма:
Если в перестановке [math]P[i][/math] есть подвижный элемент [math]a \neq n[/math], то также определены перестановки [math]P[i + 1] ... P[i + n][/math]. Причём, [math]P[i + 1]\backslash\{n\} = P[i + 2]\backslash\{n\} = ... = P[i + n]\backslash\{n\}[/math].
Доказательство:
[math]\triangleright[/math]
Заметим, что если в перестановке есть подвижный элемент [math]a \neq n[/math], то после транспозиции его с соседним элемнтом(по направлению стрелки), нам нужно будет заменить направление стрелок у всех элементов больше [math]a[/math]. Так как [math]n[/math] больше любого элемента из перестановки, то направление стрелки у него тоже изменится. По нашему утверждению, либо в новой перестановке окажется компонента [math](n,[/math][math])[/math] на первой позиции, либо компонента [math](n,[/math][math])[/math] на последней позиции. В обоих случаях [math]n[/math] окажется подвижным элементом в следующих [math]n[/math] перестановках. Так как в следующих [math]n[/math] перестановках подвижным элементом будет только [math]n[/math], то [math]P[i + 1]\backslash\{n\} = P[i + 2]\backslash\{n\} = ... = P[i + n]\backslash\{n\}[/math].
[math]\triangleleft[/math]

Теперь докажем основную лемму.

Лемма:
Алгоритм Джонсона-Троттера строит все перестановки из [math]n[/math] элементов, причём каждая перестановка отличаются от предыдущей транспозицией двух соседних элементов.
Доказательство:
[math]\triangleright[/math]

Доказывать будем по индукции. Для [math]n = 1\; - [/math] очевидно. Предположим, что для [math]n - 1[/math] алгоритм строит перестановки корректно. Докажем, что алгоритм будет корректно строить перестановки и для [math]n[/math] элементов. Разобьём все [math]n![/math] перестановок на блоки по [math]n[/math] (подряд). В силу вышедоказанной леммы в каждом блоке [math]P[i]\backslash\{n\} = P[i + 1]\backslash\{n\} = ... = P[i + n]\backslash\{n\}[/math], если [math]i\; - [/math] начало группы. Значит, в каждой группе какая-то перестановка из [math]n - 1[/math] элемента дополняется до перестановки из [math]n[/math] всеми возможными способами. Теперь докажем, что на переход между блоками элемент [math]n[/math] никак не влияет. Заметим, что при переходе между блоками [math]n[/math] является неподвижным элементом. В силу нашего утверждения [math]n[/math] стоит либо на первой, либо на последней позиции. Так как [math]n[/math] больше любого элемента, то никакой подвижный элемент не может указывать на [math]n[/math]. В силу этих фактов [math]n[/math] никак не повлияет на переход между блоками. Из этого можно сделать вывод, что при переходе между блоками перестановки строятся так же, как и перестановки из [math]n - 1[/math] элемента, а каждая такая перестановка дополняется до перестановки из [math]n[/math] элементов всеми возможными способами.

Корректность алгоритма доказана.
[math]\triangleleft[/math]

Асимптотика

Поговорим об асиптотике. Снова разобьём наши перестановки на блоки по [math]n[/math] элементов. Немного модифицируем алгоритм. Заметим, что в каждом блоке нам нужно искать максимальный элемент только один раз. В остальных случаях этим элементом будет [math]n[/math]. Следовательно, менять направление стрелок нужно тоже только один раз(в остальных случаях менять направления не нужно, так как [math]n[/math] - подвижный элемент, а менять направление стрелок нужно только у бóльших элементов). Следовательно, блок выполняется за [math]O(n) + O(n) + O(n) = O(n)[/math]. Всего блоков [math] -\:(n - 1)![/math]. Общая асимптотика [math]O(n) * (n - 1)! = O(n!)[/math].