Избыточное кодирование, код Хэмминга — различия между версиями
(→Определение и устранение ошибок в общем случае) |
(→Определение и устранение ошибок в общем случае) |
||
| Строка 73: | Строка 73: | ||
Пусть <tex>\Sigma</tex> — исходный алфавит, <tex>C: \Sigma \to B^m</tex> — кодирование, <tex>B=(0,1)</tex> | Пусть <tex>\Sigma</tex> — исходный алфавит, <tex>C: \Sigma \to B^m</tex> — кодирование, <tex>B=(0,1)</tex> | ||
| − | <tex>d: (B^m,B^m) \to R | + | <tex>d: (B^m,B^m) \to R</tex> — [[расстояние Хэмминга]] между двумя кодами. <br> |
Определим <tex>d_0 = \min</tex> <math>~d(c(x),c(y))</math>, <tex>x,y \in \Sigma</tex>, <tex>x \ne y</tex> | Определим <tex>d_0 = \min</tex> <math>~d(c(x),c(y))</math>, <tex>x,y \in \Sigma</tex>, <tex>x \ne y</tex> | ||
Версия 22:34, 30 ноября 2014
Избыточное кодирование (англ. redundant encoding) — вид кодирования, использующий избыточное количество информации с целью последующего контроля целостности данных при записи/воспроизведении информации или при её передаче по линиям связи.
Содержание
Код, определяющий одну ошибку
Увеличив объем кода на бит, можно получить возможность определять при передаче наличие одной ошибки. Для этого к коду нужно добавить бит : , такой, чтобы сумма всех единиц была четной. В случае, если контрольная сумма окажется нечетной, следует отправить запрос на повторную посылку элемента, в котором была обнаружена ошибка. Такое кодирование применяется только если вероятность ошибки крайне мала, например, в оперативной памяти компьютера.
Кодирование Хэмминга
Кодирование Хэмминга предусматривает как возможность обнаружения ошибки, так и возможность её исправления. Рассмотрим простой пример — закодируем четыре бита: . Полученный код будет иметь длину бит и выглядеть следующим образом: Рассмотрим табличную визуализацию кода:
Как видно из таблицы, даже если один из битов передался с ошибкой, содержащие его -суммы не сойдутся. Итого, зная строку и столбец в проиллюстрированной таблице можно точно исправить ошибочный бит. Если один из битов передался с ошибкой, то не сойдется только одна строка или один столбец в проиллюстрированной таблице и можно исправить ошибочный бит
По аналогичному принципу можно закодировать любое число бит. Пусть мы имеем исходную строку длиной в бит. Для получения её кода добавим к ней пар бит по следующему принципу:
- Первая пара: сумма четных бит и сумма нечетных бит
- Вторая пара: сумма тех бит, в чьем номере второй бит с конца ноль и сумма тех бит, в чьем номере второй бит с конца единица
...
- -тая пара: сумма тех бит, в чьем номере -тый бит с конца ноль и сумма тех бит, в чьем номере -тый бит с конца единица
Легко понять, что если в одном бите из строки допущена ошибка, то с помощью дописанных пар бит можно точно определить, какой именно бит ошибочный. Это объясняется тем, что каждая пара определяет один бит номера ошибочного бита в строке. Всего пар , следовательно мы имеем бит номера ошибочного бита, что вполне достаточно: общее число бит строки не превосходит .
Теперь заметим, что в случае наличия ошибки в исходной строке, ровно один бит в каждой паре будет равен единице. Тогда можно оставить только один бит из пары. Однако этого будет недостаточно, поскольку если только один добавленный бит не соответствует строке, то нельзя понять, ошибка в нём или в строке. На этот случай можно добавить ещё один контрольный бит — всех битов строки.
Итого, увеличивая код длиной на , можно обнаружить и исправить одну ошибку.
Определение и устранение ошибок в общем случае
Пусть — исходный алфавит, — кодирование,
— расстояние Хэмминга между двумя кодами.
Определим , ,
Тогда легко понять, что код, полученный преобразованием может исправлять и обнаруживать ошибок. Действительно, при любом натуральном количестве допустимых ошибок любой код образует вокруг себя проколотый шар таких строк , что . Если этот шар не содержит других кодов (что выполняется при ) , то можно утверждать, что если в него попадает строка, то она ошибочна. Аналогично можно утверждать, что если шары всех кодов не пересекаются (что выполняется при ), то попавшую в шар строку можно считать ошибочной и тождественно исправить на центр шара — строку .
