Теорема Понтрягина-Куратовского — различия между версиями

Материал из Викиконспекты
Перейти к: навигация, поиск
Строка 23: Строка 23:
  
 
Среди всех укладок графа <math>G'</math> на плоскости и среди всех циклов <math>C</math>, содержащих <math>a</math> и <math>b</math>, зафиксируем такую укладку и такой цикл, что внутри области, ограниченной циклом <math>C</math>, лежит максимальное возможное число граней графа <math>G'</math>. Зафиксируем один из обходов по циклу <math>C</math> (на рисунках будем рассматривать обход по часовой стрелке по циклу <math>C</math>). Для вершин <math>u</math> и <math>v</math> цикла <math>C</math> через <math>C[u,v]</math> будем обозначать простую <math>(u,v)</math>-цепь, идущую по циклу <math>C</math> от <math>u</math> до <math>v</math> в направлении обхода цикла. Конечно, <math>C[u,v] ≠ C[v,u]</math>. Положим <math>C(u,v) = C[u,v]\{u,v}</math>, т.е. <math>C(u,v)</math> получено из <math>C[u,v]</math> отбрасыванием вершин <math>u</math> и <math>v</math>.
 
Среди всех укладок графа <math>G'</math> на плоскости и среди всех циклов <math>C</math>, содержащих <math>a</math> и <math>b</math>, зафиксируем такую укладку и такой цикл, что внутри области, ограниченной циклом <math>C</math>, лежит максимальное возможное число граней графа <math>G'</math>. Зафиксируем один из обходов по циклу <math>C</math> (на рисунках будем рассматривать обход по часовой стрелке по циклу <math>C</math>). Для вершин <math>u</math> и <math>v</math> цикла <math>C</math> через <math>C[u,v]</math> будем обозначать простую <math>(u,v)</math>-цепь, идущую по циклу <math>C</math> от <math>u</math> до <math>v</math> в направлении обхода цикла. Конечно, <math>C[u,v] ≠ C[v,u]</math>. Положим <math>C(u,v) = C[u,v]\{u,v}</math>, т.е. <math>C(u,v)</math> получено из <math>C[u,v]</math> отбрасыванием вершин <math>u</math> и <math>v</math>.
{{Определение:
+
{{Определение
 
|definition =
 
|definition =
 
Внешним графом (относительно цикла <math>C</math>) будем называть подграф графа <math>G'</math>, порождённый всеми вершинами графа <math>G'</math>, лежащими снаружи от цикла <math>C</math>.
 
Внешним графом (относительно цикла <math>C</math>) будем называть подграф графа <math>G'</math>, порождённый всеми вершинами графа <math>G'</math>, лежащими снаружи от цикла <math>C</math>.
 
}}
 
}}
{{Определение:
+
{{Определение
 
|definition =
 
|definition =
 
Внешними компонентами будем называть компоненты связности внешнего графа.
 
Внешними компонентами будем называть компоненты связности внешнего графа.
 
}}
 
}}
 
В силу связности графа <math>G'</math> для любой внешней компоненты должны существовать рёбра в <math>G'</math>, соединяющие её с вершинами цикла <math>C</math>.
 
В силу связности графа <math>G'</math> для любой внешней компоненты должны существовать рёбра в <math>G'</math>, соединяющие её с вершинами цикла <math>C</math>.
{{Определение:
+
{{Определение
 
|definition =
 
|definition =
 
Внешними частями будем называть:
 
Внешними частями будем называть:
Строка 38: Строка 38:
 
     б) рёбра графа <math>G'</math>, лежащие снаружи от цикла <math>C</math> и соединяющие две вершины из <math>C</math>, вместе с инцидентными такому ребру вершинами.
 
     б) рёбра графа <math>G'</math>, лежащие снаружи от цикла <math>C</math> и соединяющие две вершины из <math>C</math>, вместе с инцидентными такому ребру вершинами.
 
}}
 
}}
{{Определиние:
+
{{Определиние
 
|definition =
 
|definition =
 
Внутренним графом (относительно цикла <math>C</math>) будем называть подграф графа <math>G'</math>, порождённый всеми вершинами графа <math>G'</math>, лежащими внутри цикла <math>C</math>.
 
Внутренним графом (относительно цикла <math>C</math>) будем называть подграф графа <math>G'</math>, порождённый всеми вершинами графа <math>G'</math>, лежащими внутри цикла <math>C</math>.
 
}}
 
}}
{{Определение:
+
{{Определение
 
|definition =
 
|definition =
 
Внутренними компонентами будем называть компоненты связности внутреннего графа.
 
Внутренними компонентами будем называть компоненты связности внутреннего графа.
 
}}
 
}}
 
В силу связности графа <math>G'</math> для любой внутренней компоненты должны существовать рёбра в <math>G'</math>, соединяющие её с вершинами цикла <math>C</math>.
 
В силу связности графа <math>G'</math> для любой внутренней компоненты должны существовать рёбра в <math>G'</math>, соединяющие её с вершинами цикла <math>C</math>.
{{Определение:
+
{{Определение
 
|definition =
 
|definition =
 
Внутренними частями будем называть:
 
Внутренними частями будем называть:
Строка 54: Строка 54:
 
}}
 
}}
 
Будем говорить, что внешняя (внутренняя) часть ''встречает цикл'' <math>C</math> в своих точках прикрепления к циклу <math>C</math>.
 
Будем говорить, что внешняя (внутренняя) часть ''встречает цикл'' <math>C</math> в своих точках прикрепления к циклу <math>C</math>.
{{Утверждение 5:
+
{{Утверждение 5
 
|statement =
 
|statement =
 
Любая внешняя часть встречает цикл <math>C</math> точно в двух точках, одна из которых лежит в <math>C(a,b)</math>, а другая - в <math>C(b,a)</math>.
 
Любая внешняя часть встречает цикл <math>C</math> точно в двух точках, одна из которых лежит в <math>C(a,b)</math>, а другая - в <math>C(b,a)</math>.
Строка 62: Строка 62:
 
Итого, внешняя часть встречает цикл <math>C</math> хотя бы в двух точках, никакие две из которых не лежат в <math>C[a,b]</math> и <math>C[b,a]</math>. То есть ровно одна лежит в <math>C[a,b]</math> и ровно одна - в <math>C[b,a]</math>.
 
Итого, внешняя часть встречает цикл <math>C</math> хотя бы в двух точках, никакие две из которых не лежат в <math>C[a,b]</math> и <math>C[b,a]</math>. То есть ровно одна лежит в <math>C[a,b]</math> и ровно одна - в <math>C[b,a]</math>.
 
}}
 
}}
{{Определение:
+
{{Определение
 
|definition =
 
|definition =
 
Ввиду утверждения 5 будем говорить, что любая внешняя часть является <math>(a,b)</math>-разделяющей частью, поскольку она встречает и <math>C(a,b)</math>, и <math>C(b,a)</math>.
 
Ввиду утверждения 5 будем говорить, что любая внешняя часть является <math>(a,b)</math>-разделяющей частью, поскольку она встречает и <math>C(a,b)</math>, и <math>C(b,a)</math>.
 
}}  
 
}}  
 
Аналогично можно ввести понятие <math>(a,b)</math>-разделяющей внутренней части. Заметим, что внутрення часть может встречать цикл <math>C</math>, вообще говоря, более чем в двух точках, но не менее чем в двух точках.
 
Аналогично можно ввести понятие <math>(a,b)</math>-разделяющей внутренней части. Заметим, что внутрення часть может встречать цикл <math>C</math>, вообще говоря, более чем в двух точках, но не менее чем в двух точках.
{{Утверждение 6:
+
{{Утверждение 6
 
|statement =  
 
|statement =  
 
Существует хотя бы одна <math>(a,b)</math>-разделяющая внутренняя часть.
 
Существует хотя бы одна <math>(a,b)</math>-разделяющая внутренняя часть.
Строка 73: Строка 73:
 
Пусть, от противного, таких частей нет. Тогда, выходя из <math>a</math> внутри области, ограниченной <math>C</math>, и двигаясь вблизи от <math>C</math> по направлению обхода <math>C</math> и вблизи от встречающиъся внутренних частей, можно уложить ребро <math>e = ab</math> внутри цикла <math>C</math>, т.е. <math>G</math> - планарный граф, что невозможно.
 
Пусть, от противного, таких частей нет. Тогда, выходя из <math>a</math> внутри области, ограниченной <math>C</math>, и двигаясь вблизи от <math>C</math> по направлению обхода <math>C</math> и вблизи от встречающиъся внутренних частей, можно уложить ребро <math>e = ab</math> внутри цикла <math>C</math>, т.е. <math>G</math> - планарный граф, что невозможно.
 
}}
 
}}
{{Утверждение 7:
+
{{Утверждение 7
 
|statement =
 
|statement =
 
Существует внешняя часть, встречающая <math>C(a,b)</math> в точке <math>c</math> и <math>C(b,a)</math> - в точке <math>d</math>, для которой найдётся внутренняя часть, являющаяся одновременно <math>(a,b)</math>-разделяющей и <math>(c,d)</math>-разделяющей.
 
Существует внешняя часть, встречающая <math>C(a,b)</math> в точке <math>c</math> и <math>C(b,a)</math> - в точке <math>d</math>, для которой найдётся внутренняя часть, являющаяся одновременно <math>(a,b)</math>-разделяющей и <math>(c,d)</math>-разделяющей.

Версия 06:54, 20 октября 2010

Теорема:
Граф планарен тогда и только тогда, когда он не содержит подграфов, гомеоморфных [math] K_{5} [/math], и не содержит подграфов, гомеоморфных [math] K_{3, 3} [/math] .
Доказательство:
[math]\triangleright[/math]

Необходимость

Необходимость условия очевидна.

Достаточность

От противного: пусть существует непланарный граф, который не содержит подграфов, гомеоморфных [math] K_{5} [/math] или [math] K_{3, 3} [/math]. Пусть [math] G [/math] - такой граф с наименьшим возможным числом рёбер, не содержащий изолированных вершин.

G связен

Если [math] G [/math] не связен, то его компоненты связности планарны и, следовательно, сам граф [math] G [/math] планарен.

G - обыкновенный граф

В самом деле, пусть в графе [math] G [/math] есть петля или кратное ребро [math] e [/math]. Тогда граф [math] G - e [/math] планарен. Добавляя ребро [math] e [/math] к графу [math] G - e [/math] получим, что граф [math] G [/math] он планарен.

G - блок

Пусть, от противного, в графе есть точка сочленения [math] v [/math]. Через [math] G_1 [/math] обозначим подграф графа [math] G [/math], порождённый вершинами одной из компонент связности графа [math] G - v[/math] и вершинной [math] v [/math], а через [math] G_2 [/math] подграф графа [math] G [/math], порождённый вершинами остальных компонент связности графа [math] G - v [/math] и вершиной [math] v [/math]. (рис. 1)

рис. 1

Возьмём укладку графа [math] G_1 [/math] на плоскости такую, что вершина [math] v [/math] лежит на границе верхней грани. Затем во внешней грани графа [math] G_1 [/math] возьмём укладку графа [math] G_2 [/math] такую, что вершина [math] v [/math] будет представлена на плоскости в двух экземплярах. (рис. 2)

рис. 2

Соединим два экземпляра вершины [math] v [/math] пучком жордановых линий, не допуская лишних пересечений с укладками графов [math] G_1 [/math] и [math] G_2 [/math], состоящим из такого количества линий, какова степень вершины [math] v [/math] в графе [math] G_2 [/math]. Далее отбросим вхождение вершины [math] v [/math] в граф [math] G_2 [/math], заменяя инцидентные её рёбра на жордановы линии, полученные из линий указанного пучка и рёбер (рис. 3)

рис. 3

Таким образом мы получили укладку графа [math] G [/math] на плоскости, что невозможно.


Среди всех укладок графа [math]G'[/math] на плоскости и среди всех циклов [math]C[/math], содержащих [math]a[/math] и [math]b[/math], зафиксируем такую укладку и такой цикл, что внутри области, ограниченной циклом [math]C[/math], лежит максимальное возможное число граней графа [math]G'[/math]. Зафиксируем один из обходов по циклу [math]C[/math] (на рисунках будем рассматривать обход по часовой стрелке по циклу [math]C[/math]). Для вершин [math]u[/math] и [math]v[/math] цикла [math]C[/math] через [math]C[u,v][/math] будем обозначать простую [math](u,v)[/math]-цепь, идущую по циклу [math]C[/math] от [math]u[/math] до [math]v[/math] в направлении обхода цикла. Конечно, [math]C[u,v] ≠ C[v,u][/math]. Положим [math]C(u,v) = C[u,v]\{u,v}[/math], т.е. [math]C(u,v)[/math] получено из [math]C[u,v][/math] отбрасыванием вершин [math]u[/math] и [math]v[/math].

Определение:
Внешним графом (относительно цикла [math]C[/math]) будем называть подграф графа [math]G'[/math], порождённый всеми вершинами графа [math]G'[/math], лежащими снаружи от цикла [math]C[/math].


Определение:
Внешними компонентами будем называть компоненты связности внешнего графа.

В силу связности графа [math]G'[/math] для любой внешней компоненты должны существовать рёбра в [math]G'[/math], соединяющие её с вершинами цикла [math]C[/math].

Определение:
Внешними частями будем называть:
   a) внешние компоненты вместе со всеми рёбрами, соединяющими компоненту с вершинами цикла [math]C[/math], и инцидентными им вершинами;
б) рёбра графа [math]G'[/math], лежащие снаружи от цикла [math]C[/math] и соединяющие две вершины из [math]C[/math], вместе с инцидентными такому ребру вершинами.

Шаблон:Определиние

Определение:
Внутренними компонентами будем называть компоненты связности внутреннего графа.

В силу связности графа [math]G'[/math] для любой внутренней компоненты должны существовать рёбра в [math]G'[/math], соединяющие её с вершинами цикла [math]C[/math].

Определение:
Внутренними частями будем называть:
   a) внутренние компоненты вместе со всеми рёбрами, соединяющими компоненту с вершинами цикла [math]C[/math], и инцидентными им вершинами;
б) рёбра графа [math]G'[/math], лежащие внутри цикла [math]C[/math] и соединяющие две вершины из [math]C[/math], вместе с инцидентными такому ребру вершинами.

Будем говорить, что внешняя (внутренняя) часть встречает цикл [math]C[/math] в своих точках прикрепления к циклу [math]C[/math]. Шаблон:Утверждение 5

Определение:
Ввиду утверждения 5 будем говорить, что любая внешняя часть является [math](a,b)[/math]-разделяющей частью, поскольку она встречает и [math]C(a,b)[/math], и [math]C(b,a)[/math].

Аналогично можно ввести понятие [math](a,b)[/math]-разделяющей внутренней части. Заметим, что внутрення часть может встречать цикл [math]C[/math], вообще говоря, более чем в двух точках, но не менее чем в двух точках. Шаблон:Утверждение 6 Шаблон:Утверждение 7

Разбор случаев взаимного положения a, b, c, d, u1, u2, v1, v2

Рассмотрим 2 случая.

рис. 1

1. Пусть пара вершин [math]\ v_1 [/math] и [math]\ v_2 [/math] является [math](a, b)[/math]-разделяющей.
Тогда, в частности, [math]v_2 \ne a[/math] и [math] v_1 \ne b[/math]. В этом случае граф G содержит подграф, гомеоморфный [math]\ K_{3,3} [/math] (отметим, что в [math] In [/math] существует простая [math](v_1, v_2)[/math]-цепь)(рис. 1).


2. Пусть пара вершин [math]v_1[/math] и [math]v_2[/math] не является [math](a, b)[/math]-разделяющей.
Тогда [math]v_1, v_2[/math] лежат на [math]C[a, b][/math] или на [math]C[b, a][/math]. Без ограничения общности будет считать, что [math]v_1[/math] и [math]v_2[/math] лежат на [math]C[a, b][/math].

2.1. Пусть [math]v_1[/math] и [math]v_2[/math] лежат на [math]C(a, b)[/math], т.е. [math]v_1 \ne b[/math] и [math]v_2 \ne a[/math](рис. 2).

2.1.1 Пусть [math]u_2[/math] лежит на [math]C(d, a)[/math].
Тогда в графе G имеется подграф, гомеоморфный [math]K_{3,3}[/math](рис. 3).

2.1.2. Пусть [math]u_2 = d[/math].
Тогда во внешней части [math]In[/math] имеется вершина [math]w[/math] и три простые цепи от [math]w[/math] соответственно до [math]d, v_1, v_2[/math], которые в качестве общей точки имеют только точку [math]w[/math]. В этом случае в графе G имеется подграф, гомеоморфный [math]K_{3,3}[/math](рис. 4).

2.1.3. Пусть [math]u_2[/math] лежит на [math]C(b, d)[/math].
Тогда в графе G есть подграф, гомеоморфный [math]K{3,3}[/math](рис. 5).

рис. 2 рис. 3 рис. 4 рис. 5


Теперь рассмотрим случаи, когда хотя бы одна из вершин [math]v_1[/math] и [math]v_2[/math] не лежит на [math]С(a, b)[/math]. Без ограничения общности будем считать, что это вершина [math]v_1[/math], т.е [math]v_1 = b[/math](поскольку [math]v_1[/math] лежит на [math]C[a, b][/math]).

2.2. Пусть [math]v_2 \ne a[/math].

2.2.1. Пусть [math]u_2[/math] лежит на [math]C(d, a)[/math].
Тогда в графе G есть пограф, гомеоморфный [math]K_{3,3}[/math](рис. 6).

2.2.2. Пусть [math]u_2 = d[/math].
Тогда в графе G имеется подграф, гомеоморфный [math]K_{3,3}[/math](рис. 7).

2.2.3. Пусть [math]u_2[/math] лежит на [math]C(b, d)[/math].
Тогда в графе G имеется подграф, гомеоморфный [math]K_{3,3}[/math](рис. 8).

рис. 6 рис. 7 рис. 8


2.3. Пусть [math]v_2 = a[/math](рис. 9).
Рассмотрим теперь пару вершин [math]u_1[/math] и [math]u_2[/math]. Будем считать, что [math]u_1 = c[/math] и [math]u_2 = d[/math], поскольку все другие случаи расположения вершин [math]u_1[/math] и [math]u_2[/math] так же, как были рассмотрены все случаи расположения [math]v_1[/math] и [math]v_2[/math]. Пусть [math]P_1[/math] и [math]P_2[/math] -- соответственно кратчайшие простые [math](a, b)[/math]-цепь и [math](c, d)[/math]-цепь по внутренней части [math]In[/math](рис. 10). Заметим, что [math]P_1[/math] и [math]P_2[/math] имеют общую точку.

2.3.1. Пусть цепи [math]P_1[/math] и [math]P_2[/math] имеют более одной общей точки.
Тогда в графе G есть подграф, гомеоморфный [math]K_{3,3}[/math](рис. 11).

2.3.2. Пусть цепи [math]P_1[/math] и [math]P_2[/math] имеют точно одну общую точку [math]w[/math].
Тогда в графе G есть подграф, гомеоморфный [math]K_5[/math](рис. 12).

рис. 9 рис. 10 рис. 11 рис. 12

Таким образом, доказано, что в графе G имеется подграф, гомеоморфный [math]K_{3,3}[/math] или [math]K_5[/math], что противоречит нашему первому предположению.
[math]\triangleleft[/math]

Литература

  • Асанов М,, Баранский В., Расин В. - Дискретная математика - Графы, матроиды, алгоритмы