Свойства перечислимых языков. Теорема Успенского-Райса — различия между версиями
(→См. также) |
Shersh (обсуждение | вклад) м (→Свойства языков) |
||
Строка 5: | Строка 5: | ||
|definition='''Свойством языков''' (англ. ''property of languages'') называется множество <tex> A \subset \mathrm {RE} </tex>. | |definition='''Свойством языков''' (англ. ''property of languages'') называется множество <tex> A \subset \mathrm {RE} </tex>. | ||
}} | }} | ||
− | ''' | + | '''Примеры свойств''': |
+ | * Язык должен содержать слово ''hello''. | ||
+ | * Язык должен содержать хотя бы одно простое число. | ||
− | |||
{{Определение | {{Определение | ||
|definition=Свойство называется '''тривиальным''' (англ. ''trivial''), если <tex> A = \varnothing </tex> или <tex> A = \mathrm {RE} </tex>. | |definition=Свойство называется '''тривиальным''' (англ. ''trivial''), если <tex> A = \varnothing </tex> или <tex> A = \mathrm {RE} </tex>. |
Версия 13:26, 13 декабря 2014
Свойства языков
Рассмотрим множество всех перечислимых языков .
Определение: |
Свойством языков (англ. property of languages) называется множество | .
Примеры свойств:
- Язык должен содержать слово hello.
- Язык должен содержать хотя бы одно простое число.
Определение: |
Свойство называется тривиальным (англ. trivial), если | или .
Псевдокод для
p(A) return false
Псевдокод для
.p(A) return true
Определение: |
Язык свойства (англ. language of property) | — множество программ, языки которых обладают этим свойством: .
Пример. Пусть
— разрешитель некоторого языкаp() return ('hello')
Определение: |
Свойство разрешимым. | называется разрешимым (англ. recursive), если является
Теорема Успенского-Райса
Теорема: |
Язык никакого нетривиального свойства не является разрешимым. |
Доказательство: |
Приведём доказательство от противного. Предположим, что разрешимо и нетривиально, — программа, разрешающая .Не умаляя общности, можно считать, что (в противном случае перейдём к , которое также будет разрешимым и нетривиальным, так как != и != . Исключение пустого множества нам нужно чтобы различать и пустое (при построении функции .Поскольку непусто, то найдётся перечислимый язык . Пусть — полуразрешитель .Рассмотрим вспомогательную программу: — универсальная функцияif U(i, x) == 1 //если i на входе x выдает 1 return else while true Нетрудно понять, что в разумной модели вычислений номер этой программы можно вычислить по данным и . Значит, можно рассмотреть такую программу:return Заметим, что Следовательно,— программа, разрешающая универсальное множество. Получили противоречие. |
См. также
Источники информации
- Wikipedia — Rice's theorem
- Rice, H. G. "Classes of Recursively Enumerable Sets and Their Decision Problems." Trans. Amer. Math. Soc. 74, 358-366, 1953.
- Хопкрофт Д., Мотванн Р., Ульманн Д. Введение в теорию автоматов, языков и вычислений страница 397.