Класс P — различия между версиями
Строка 12: | Строка 12: | ||
# Замкнутость относительно дополнений. <tex> L \in P \Rightarrow \overline L \in P</tex> | # Замкнутость относительно дополнений. <tex> L \in P \Rightarrow \overline L \in P</tex> | ||
# Замкнутость относительно [[Сведение по Карпу|сведения по Карпу]]. <tex> L \in P , M \le L \Rightarrow M \in P</tex> | # Замкнутость относительно [[Сведение по Карпу|сведения по Карпу]]. <tex> L \in P , M \le L \Rightarrow M \in P</tex> | ||
− | # Замкнутость относительно [[Сведение по Карпу|сведения по Куку]]. | + | # Замкнутость относительно [[Сведение по Карпу|сведения по Куку]]. <tex>L \subset P \Rightarrow P=P^L</tex>. |
− | |||
==Примеры задач и языков из <tex>P</tex>== | ==Примеры задач и языков из <tex>P</tex>== |
Версия 18:44, 18 марта 2010
В теории сложности Класс
— класс языков (задач), разрешимых на детерминированной машине Тьюринга за полиномиальное время, то есть.
Содержание
Определение
Язык L лежит в классе
тогда и только тогда, когда существует такая детерминированная машина Тьюринга , что:- завершает свою работу за полиномиальное время на любых входных данных
- если на вход машине подать слово , то она допустит его
- если на вход машине подать слово , то она не допустит его
Свойства класса
- Замкнутость относительно дополнений.
- Замкнутость относительно сведения по Карпу.
- Замкнутость относительно сведения по Куку. .
Примеры задач и языков из
Класс задач, разрешимых за полиномиальное время достаточно широк, вот несколько его представителей:
- определение связности графов;
- вычисление наибольшего общего делителя;
- проверка простоты числа.
Но, по теореме о временной иерархии существуют и задачи не из .
Задача равенства и
Одним из центральных вопросов теории сложности является вопрос о равенстве классов NP, не разрешенный по сей день. Однако легко показать, что по определению, , так как достаточно для любой задачи класса привести ее решение в качестве сертификата, а значит задача по определению будет входить в класс
и