Метод генерации случайной перестановки, алгоритм Фишера-Йетса — различия между версиями

Материал из Викиконспекты
Перейти к: навигация, поиск
м
(очепятка)
Строка 11: Строка 11:
 
     for i = 1 to n
 
     for i = 1 to n
 
       j = <tex>\mathrm{random(1..i)}</tex>
 
       j = <tex>\mathrm{random(1..i)}</tex>
       <tex>\mathrm{swap(a[i], [j])}</tex>
+
       <tex>\mathrm{swap(a[i], a[j])}</tex>
 
   return a
 
   return a
 +
 
==Обоснование==
 
==Обоснование==
 
Проведем доказательство по индукции. Всего перестановок <tex> n! </tex>, поэтому вероятность каждой из них должна быть равна <tex> \frac {1}{n!}</tex>. Показажем, что на каждом i-ом шаге цикла любая перестановка из первых <tex>i</tex> элементов равновероятна.
 
Проведем доказательство по индукции. Всего перестановок <tex> n! </tex>, поэтому вероятность каждой из них должна быть равна <tex> \frac {1}{n!}</tex>. Показажем, что на каждом i-ом шаге цикла любая перестановка из первых <tex>i</tex> элементов равновероятна.

Версия 23:35, 15 декабря 2014

Тасование Фишера–Йетса (названо в честь Рональда Фишера (Ronald Fisher) и Франка Йетса (Frank Yates)) – алгоритм создания случайных перестановок конечного множества, попросту говоря, для случайного тасования множества. Основная процедура тасования Фишера–Йетса аналогична случайному вытаскиванию записок с числами из шляпы или карт из колоды, один элемент за другим, пока элементы не кончатся. Алгоритм обеспечивает эффективный и строгий метод таких операций, гарантирующий несмещённый результат.

Постановка задачи

Необходимо сгенерировать случайную перестановку из [math] n [/math] чисел с равномерным распределением вероятности, если есть в наличии функция для генерации случайного числа в заданном интервале.

Решение

Пусть

  • random(1..i); генерирует случайное число в интервале [math] [1;\; i] [/math]

Следующий алгоритм решает задачу:

 function randomPermutation(a:array[1..n] of integer):array[1..n] of integer // n — длина массива
   for i = 1 to n
     j = [math]\mathrm{random(1..i)}[/math]
     [math]\mathrm{swap(a[i], a[j])}[/math]
 return a

Обоснование

Проведем доказательство по индукции. Всего перестановок [math] n! [/math], поэтому вероятность каждой из них должна быть равна [math] \frac {1}{n!}[/math]. Показажем, что на каждом i-ом шаге цикла любая перестановка из первых [math]i[/math] элементов равновероятна.

  • при [math] i = 1 [/math] перестановка всего одна, и, очевидно, что база верна
  • пусть при [math] i = k - 1 [/math] каждая перестановка первых [math]i[/math] элементов равновероятна, то есть вероятность каждой отдельно взятой перестановки на [math]i[/math]-ом шаге цикла равна [math] \frac {1}{(k-1)!}[/math]
при [math] i = k [/math]:
[math] a:array[ a_{1}, a_{2}, ..., a_{k-1}, k, ... ] [/math]
после [math]swap(i, random(1..i))[/math] вероятность какого-то числа оказаться на [math]k[/math]-ом месте равна [math]\frac{1}{k}[/math]. Вероятность же какой-то перестановки первых [math](k-1)[/math] элементов при известном [math]a_{k}[/math] останется [math] \frac {1}{(k-1)!}[/math], что в результате дает, что вероятность перестановки первых [math]k[/math] элементов равна [math] \frac {1}{k!}[/math]


Другой способ обоснования заключается в том, что каждая перестановка в результате работы этого алгоритма может получиться ровно одним способом, причем всегда ровно за [math] n [/math] шагов, таким образом автоматически получается, что все [math] n![/math] перестановок равновероятны.

Неправильные способы реализации

Небольшая модификация этого алгоритма, может резко сказаться на его корректности. Например, следующие два алгоритма работают неправильно:

 for i = 1..n
   swap(i, random(1..n))
 for i = 1..n
   swap(random(1..n), random(1..n))

В самом деле: число способов сгенерировать последовательность в первом случае равно [math]n^n[/math], во втором равно [math] (n^2)^n[/math], а всего последовательностей [math] n![/math]. Для того, чтобы сгенерированные последовательности были равновероятны, необходимо хотя бы, чтобы число способов получить последовательность было кратно их общему числу. То есть в первом случае необходимо [math](n^n) \vdots n![/math] а во втором случае [math]((n^2)^n) \vdots n![/math], что заведомо не выполняется при подстановке любого нечетного числа, начиная с 3.

Примечание

  • Впервые этот алгоритм опубликовали Р.А.Фишер и Ф.Йетс (R.A.Fisher and F. Yates, Statistical Tables (London 1938), Example 12).
  • Нетрудно увидеть, что сложность алгоритма [math] O(n)[/math]

Источники

См.также