Алгоритм Баума-Велша — различия между версиями
(→Источники) |
|||
Строка 26: | Строка 26: | ||
2.<tex>a_j(t + 1) = b_j(O_{t + 1})\displaystyle\sum^N_{i=1}a_i(t) \cdot a_{ij}</tex>. | 2.<tex>a_j(t + 1) = b_j(O_{t + 1})\displaystyle\sum^N_{i=1}a_i(t) \cdot a_{ij}</tex>. | ||
+ | == Пример == | ||
== Псевдокод == | == Псевдокод == | ||
== Применение == | == Применение == |
Версия 20:31, 21 декабря 2014
Алгоритм Баума-Велша — алгоритм для нахождения неизвестных параметров скрытой Марковской модели. Использует алгоритм прямого-обратного хода.
Описание алгоритма
Пусть
- это дискретная случайная переменная, принимающая одно из значений . Будем полагать, что данная модель Маркова, определенная как однородна по времени, то есть независима от . Тогда можно задать как независящую от времени стохастическую матрицу перемещений . Особый случай для времени определяется начальным распределением .Будем считать, что мы в состоянии
в момент времени , если . Последовательность заданных состояний определяется как , где является состоянием в момент времени .Наблюдение может иметь одно из
возможных значений, . Вероятность заданного вектора наблюдений в момент времени для состояния определяется как - это матрица на . Заданная последовательность наблюдений выражается как .Следовательно, мы можем описать скрытую модель Маркова с помощью
. При заданном векторе наблюдений алгоритм Баума-Велша находит . максимизирует вероятность наблюдений .
Исходные данные:
со случайными начальными условиями. Алгоритм итеративно обновляет параметр до схождения в одной точке.
Прямая процедура
, что является вероятностью получения заданной последовательности для состояния в момент времени .
можно вычислить рекурсивно:
1.
.2.
.Пример
Псевдокод
Применение
Источники
1. https://ru.wikipedia.org/wiki/Алгоритм_Баума_-_Велша
2. http://logic.pdmi.ras.ru/~sergey/teaching/asr/notes-09-hmm.pdf
3. http://en.wikipedia.org/wiki/Baum%E2%80%93Welch_algorithm