Алгоритм Баума-Велша — различия между версиями
(→Пример) |
м |
||
Строка 1: | Строка 1: | ||
− | '''''Алгоритм Баума-Велша ('' Baum–Welch algorithm '')''''' — алгоритм для нахождения неизвестных параметров [[Скрытые_Марковские_модели | скрытой Марковской модели]]. Использует [[Алгоритм_"Вперед-Назад" | алгоритм прямого-обратного хода]]. | + | '''''Алгоритм Баума-Велша ('''Baum–Welch algorithm''')''''' — алгоритм для нахождения неизвестных параметров [[Скрытые_Марковские_модели | скрытой Марковской модели]]. Использует [[Алгоритм_"Вперед-Назад" | алгоритм прямого-обратного хода]]. |
==История== | ==История== | ||
[[Скрытые_Марковские_модели | Скрытые Марковские модели]] (HMMs) и алгоритм Баума-Велша впервые были описаны в заметках Леонарда Баума и его сверстников в конце 1960х. Одно из первых основных приложений на основе HMMs было использовано в области обработки речи. В 1980х HMMs стало эффективным инструментом в анализе биологических систем и информации, особенно в генном анализе. | [[Скрытые_Марковские_модели | Скрытые Марковские модели]] (HMMs) и алгоритм Баума-Велша впервые были описаны в заметках Леонарда Баума и его сверстников в конце 1960х. Одно из первых основных приложений на основе HMMs было использовано в области обработки речи. В 1980х HMMs стало эффективным инструментом в анализе биологических систем и информации, особенно в генном анализе. |
Версия 01:22, 22 декабря 2014
Алгоритм Баума-Велша (Baum–Welch algorithm) — алгоритм для нахождения неизвестных параметров скрытой Марковской модели. Использует алгоритм прямого-обратного хода.
Содержание
История
Скрытые Марковские модели (HMMs) и алгоритм Баума-Велша впервые были описаны в заметках Леонарда Баума и его сверстников в конце 1960х. Одно из первых основных приложений на основе HMMs было использовано в области обработки речи. В 1980х HMMs стало эффективным инструментом в анализе биологических систем и информации, особенно в генном анализе.
Описание алгоритма
Пусть
— это дискретная случайная переменная, принимающая одно из значений . Будем полагать, что данная модель Маркова, определенная как однородна по времени, то есть независима от . Тогда можно задать как независящую от времени стохастическую матрицу перемещений . Особый случай для времени определяется начальным распределением .Будем считать, что мы в состоянии
в момент времени , если . Последовательность заданных состояний определяется как , где является состоянием в момент времени .Наблюдение может иметь одно из
возможных значений, . Вероятность заданного вектора наблюдений в момент времени для состояния определяется как — это матрица на . Заданная последовательность наблюдений выражается как .Следовательно, мы можем описать скрытую модель Маркова с помощью
. При заданном векторе наблюдений алгоритм Баума-Велша находит . максимизирует вероятность наблюдений .
Исходные данные:
со случайными начальными условиями. Алгоритм итеративно обновляет параметр до схождения в одной точке.
Прямая процедура
, что является вероятностью получения заданной последовательности для состояния в момент времени .
можно вычислить рекурсивно:
1.
;2.
.Обратная процедура
Данная процедура позволяет вычислить вероятность конечной заданной последовательности
при условии, что мы начали из исходного состояния , в момент времени .можно вычислить рекурсивно:
1.
;2.
.Обновление переменных
Определим временные переменные:
.
Имея
и , можно определить:,
,
.
Используя новые переменные
итерации продолжаются до схождения.Пример
Предположим, у нас есть курица, с которой мы собираем яйца. Снесла ли курица яйца — зависит от некоторых неизвестных факторов. Для простоты предположим, что существуют лишь два состояния, которые определяют куриные ли это яйца. В начальный момент нам неизвестно текущее состояние, также нам неизвестна вероятность перехода из одного состояния в другое. Для начала возьмем произвольные матрицы переходов и состояний.
|
|
|
Рассмотрим набор наблюдений (E - яйца отложены, N — яйца не отложены): NN, NN, NN, NN, NE, EE, EN, NN, NN.
Следующим шагом оценим новую матрицу переходов:
Последовательность | Вероятность последовательности и состояний | Наибольшая вероятность наблюдения |
---|---|---|
NN | 0.024 | 0.3584 S2,S2 |
NN | 0.024 | 0.3584 S2,S2 |
NN | 0.024 | 0.3584 S2,S2 |
NN | 0.024 | 0.3584 S2,S2 |
NE | 0.006 | 0.1344 S2,S1 |
EE | 0.014 | 0.0490 S1,S1 |
EN | 0.056 | 0.0896 S2,S2 |
NN | 0.024 | 0.3584 S2,S2 |
NN | 0.024 | 0.3584 S2,S2 |
Итог | 0.22 | 2.4234 |
Таким образом получаем новую оценку перехода из
в составляет . После этого можно подсчитать вероятность переходов из в , в , в и изменим их так, чтобы в суммы вероятностей давали 1. В итоге получаем новую матрицу переходов:
|
|
|
Далее оценим новую матрицу состояний:
Последовательности | Наибольшая вероятность наблюдения Если допустимо, что E получено из |
Наибольшая вероятность наблюдения |
---|---|---|
NE | 0.1344 S2,S1 | 0.1344 S2,S1 |
EE | 0.0490 S1,S1 | 0.0490 S1,S1 |
EN | 0.0560 S1,S2 | 0.0896 S1,S2 |
Итог | 0.2394 | 0.2730 |
Новая оценка для E, полученного из
составляет .Благодаря этому, возможно рассчитать матрицу состояний:
|
|
|
Для оценки начальной вероятности, мы предполагаем, что все последовательности начаты со скрытого состояния
и рассчитаны с высокой вероятностью, а затем повторяем для . После нормализации получаем обновленный исходный вектор.Повторяем эти шаги до тех пор, пока вероятности не сойдутся.
Псевдокод
DynamicOptionalStateSequance(, D): double [1, i] = [i] * b[i, d[1]] int [1, i] = [] int ans[] for t = 2 to T for i = 1 to n if [t, j] < [t - 1, i] * a[i, j] * b[j, d[t]] [t, j] = [t - 1, i] * a[i, j] * b[j, d[t]] [t, j] = i ans[T] = 1 for i = 2 to n if [T, i] > [T, i - 1] ans[T] = i for t = T - 1 downto 1 ans[t] = [t + 1, ans[t + 1]] return ans