Оптимальный префиксный код с длиной кодового слова не более L бит — различия между версиями
Строка 4: | Строка 4: | ||
Данный алгоритм бывает полезен, когда нам нужно ограничить максимальную длину кодового слова, а при использовании алгоритма Хаффмана самому редко встречающемуся символу соответствует слишком длинное кодовое слово. Например, пусть дан алфавит из 5 символов <tex>A=\{A,B,C, C, D\}</tex>, а частоты символов являются степенями двойки: <tex>P=\{1,2,4, 8, 16\}</tex>. Тогда классический код Хоффмана будет выглядеть следующим образом: | Данный алгоритм бывает полезен, когда нам нужно ограничить максимальную длину кодового слова, а при использовании алгоритма Хаффмана самому редко встречающемуся символу соответствует слишком длинное кодовое слово. Например, пусть дан алфавит из 5 символов <tex>A=\{A,B,C, C, D\}</tex>, а частоты символов являются степенями двойки: <tex>P=\{1,2,4, 8, 16\}</tex>. Тогда классический код Хоффмана будет выглядеть следующим образом: | ||
− | + | {| class="wikitable" | |
− | + | ! Символ || Частота || Код | |
− | + | |- align = "center" | |
− | + | | A || 1 || 1111 | |
− | + | |- align = "center" | |
− | + | | B || 2 || 1110 | |
− | + | |- align = "center" | |
− | + | | C || 4 || 110 | |
− | + | |- align = "center" | |
+ | | D || 8 || 10 | ||
+ | |- align = "center" | ||
+ | | E || 16 || 0 | ||
+ | |} | ||
Самое длинное кодовое слово здесь имеет длину 4. Пусть мы хотим, чтобы слова в нашем коде были не длиннее трех бит. Тогда алгоритм, который будет описан ниже, генерирует такой код: | Самое длинное кодовое слово здесь имеет длину 4. Пусть мы хотим, чтобы слова в нашем коде были не длиннее трех бит. Тогда алгоритм, который будет описан ниже, генерирует такой код: | ||
− | + | {| class="wikitable" | |
− | + | ! Символ || Частота || Код | |
− | + | |- align = "center" | |
− | + | | A || 1 || 000 | |
− | + | |- align = "center" | |
− | + | | B || 2 || 001 | |
− | + | |- align = "center" | |
− | + | | C || 4 || 010 | |
− | + | |- align = "center" | |
+ | | D || 8 || 011 | ||
+ | |- align = "center" | ||
+ | | E || 16 || 1 | ||
+ | |} | ||
Важно заметить следующий факт. В худшем случае все кодовые слова будут иметь длину L бит. Тогда мы можем закодировать <tex> 2^L </tex> символов. Таким образом, нельзя получить описанный выше код, если <tex> n > 2^L </tex>. | Важно заметить следующий факт. В худшем случае все кодовые слова будут иметь длину L бит. Тогда мы можем закодировать <tex> 2^L </tex> символов. Таким образом, нельзя получить описанный выше код, если <tex> n > 2^L </tex>. |
Версия 20:38, 23 декабря 2014
Оптимальный префиксный код с длиной кодового слова не более L бит — это код, в котором длина каждого кодового слова не должна превышать заданной константы. Здесь будет приведен алгоритм, решающий эту задачу за время задаче о рюкзаке.
, где — максимальная длина кодового слова, — размер алфавита, c помощью сведения задачи кСодержание
- 1 Пример.
- 2 Сведение задачи о рюкзаке к генерации оптимального префиксного кода с длиной кодового слова не более L бит.
- 3 Восстановление ответа.
- 4 Пример работы алгоритма генерации оптимального префиксного кода с длиной кодового слова не более L бит
- 5 Пример восстановления ответа.
- 6 См. также
- 7 Источники информации
Пример.
Данный алгоритм бывает полезен, когда нам нужно ограничить максимальную длину кодового слова, а при использовании алгоритма Хаффмана самому редко встречающемуся символу соответствует слишком длинное кодовое слово. Например, пусть дан алфавит из 5 символов
, а частоты символов являются степенями двойки: . Тогда классический код Хоффмана будет выглядеть следующим образом:Символ | Частота | Код |
---|---|---|
A | 1 | 1111 |
B | 2 | 1110 |
C | 4 | 110 |
D | 8 | 10 |
E | 16 | 0 |
Самое длинное кодовое слово здесь имеет длину 4. Пусть мы хотим, чтобы слова в нашем коде были не длиннее трех бит. Тогда алгоритм, который будет описан ниже, генерирует такой код:
Символ | Частота | Код |
---|---|---|
A | 1 | 000 |
B | 2 | 001 |
C | 4 | 010 |
D | 8 | 011 |
E | 16 | 1 |
Важно заметить следующий факт. В худшем случае все кодовые слова будут иметь длину L бит. Тогда мы можем закодировать
символов. Таким образом, нельзя получить описанный выше код, если .Сведение задачи о рюкзаке к генерации оптимального префиксного кода с длиной кодового слова не более L бит.
Пусть
— ограничение на длину кодового слова, а — частоты символов алфавита. Алгоритм генерации кода будет следующим:- Отсортируем символы алфавита в порядке возрастания их частот.
- Для каждого символа создадим предметов ценностью , каждый из которых имеет вес .
- С помощью задачи о рюкзаке выберем набор предметов суммарной ценностью <ex>n - 1</tex> ( — размер алфавита) с минимальным суммарным весом.
- Посчитаем массив , где — количество предметов ценностью , которые попали в наш набор.
При этом
— это длина кодового слова для -го символа.Зная длины кодовых слов, легко восстановить и сам код.Восстановление ответа.
- Отсортируем все символы по возрастанию длины кодового слова, которое им соответствует, а при равенстве длин — в алфавитном порядке.
- Первому символу сопоставим код, состоящий из нулей, соответствующей длины.
- Каждому следующему символу сопоставим следующее двоичное число. При этом если его длина меньше необходимой, то допишем нули справа.
Заметим, что при генерации каждого следующего кодового слова, в качестве его префикса выступает последовательность, лексикографически большая, чем предыдущее кодовое слово (т.к. мы берем следующее двоичное число), а значит ни для каких двух кодовых слов одно не может быть префиксом другого. Т.е. код, сгенерированный таким образом является префиксным.
Пример работы алгоритма генерации оптимального префиксного кода с длиной кодового слова не более L бит
Пусть
— алфавит из трех различных символов, — соответствующий ему набор частот. Пусть — ограничение на длину кодового слова.Сначала создадим необходимый набор предметов;
Символ | Частота | Предметы |
---|---|---|
A | 1 | |
B | 2 | |
C | 3 |
Решим задачу о рюкзаке для заданного набора и выберем предметы суммарной ценностью
с минимальным суммарным весом. В нашем случае в оптимальный набор попадут следующие предметы:
Посчитаем массив
:
Итак, мы получили длины кодовых слов для символов. Осталось восстановить ответ.
Пример восстановления ответа.
Итак, у нас есть
— алфавит из n различных символов, а также — соответсвующие длины кодовых слов. Отсортируем символы в соответсвии с этими длинами.Сопоставим первому символу код, состоящий из 1 нуля:
Сопоставим следующему символу следующее двоичное число. Т.к. длина кода увеличилась на один, то припишем справа ноль:
Сопоставим следующему символу следующее двоичное число.