Укладка графа с планарными компонентами вершинной двусвязности — различия между версиями
Строка 1: | Строка 1: | ||
{{Теорема | {{Теорема | ||
|about=об укладке графа с планарными компонентами вершинной двусвязности | |about=об укладке графа с планарными компонентами вершинной двусвязности | ||
− | |statement=Если [[Отношение вершинной двусвязности|компоненты вершинной двусвязности]] графа <tex>G</tex> планарны, то и сам граф <tex>G</tex> планарен. | + | |statement=Если [[Отношение вершинной двусвязности|компоненты вершинной двусвязности]] [[Основные определения: граф, ребро, вершина, степень, петля, путь, цикл|графа]] <tex>G</tex> [[Укладка графа на плоскости|планарны]], то и сам граф <tex>G</tex> планарен. |
|proof= | |proof= | ||
Строка 15: | Строка 15: | ||
}} | }} | ||
− | Докажем утверждение теоремы для одной из компоненты связности графа <tex>G</tex>. Ясно, что имея укладки на плоскости каждой из компонент связности | + | Докажем утверждение теоремы для одной из компоненты связности графа <tex>G</tex>. Ясно, что имея укладки на плоскости каждой из компонент связности графа, мы можем получить укладку на плоскости и всего графа. |
− | Итак пусть граф <tex>G</tex> связен. Если <tex>G = K_1</tex>, то <tex>G</tex> очевидно планерен, поэтому предположим, что <tex>|EG| \ge 1</tex> , а значит имеется по-крайней мере один блок в <tex>G</tex>. Рассмотрим связный подграф <tex>T</tex> графа блоков и точек сочленений графа <tex>G</tex> такой, что <tex>\forall v</tex> | + | Итак пусть граф <tex>G</tex> связен. Если <tex>G = K_1</tex>, то <tex>G</tex> очевидно планерен, поэтому предположим, что <tex>|EG| \ge 1</tex> , а значит имеется по-крайней мере один блок в <tex>G</tex>. Рассмотрим связный подграф <tex>T</tex> графа блоков и точек сочленений графа <tex>G</tex> такой, что <tex>\forall v</tex> - т.с. <tex>G</tex> имеем <tex>deg(v) \ge 2</tex>. Из [[Граф блоков-точек сочленения#lemma1|леммы]] и из связности <tex>T</tex> - получаем, что <tex>T</tex> — двудольное [[Дерево, эквивалентные определения|дерево]]. |
Докажем индукцией по числу вершин в графе <tex>T</tex>, что подграф <tex>G'</tex> графа <tex>G</tex> состоящий из блоков графа <tex>G</tex> принадлежащих графу <tex>T</tex> планарен (далее будем говрить, что <tex>G'</tex> соответствует <tex>T</tex>). | Докажем индукцией по числу вершин в графе <tex>T</tex>, что подграф <tex>G'</tex> графа <tex>G</tex> состоящий из блоков графа <tex>G</tex> принадлежащих графу <tex>T</tex> планарен (далее будем говрить, что <tex>G'</tex> соответствует <tex>T</tex>). |
Версия 20:55, 21 октября 2010
Теорема (об укладке графа с планарными компонентами вершинной двусвязности): | ||||||
Доказательство: | ||||||
Докажем вспомогательную лемму.
Докажем утверждение теоремы для одной из компоненты связности графа леммы и из связности - получаем, что — двудольное дерево. . Ясно, что имея укладки на плоскости каждой из компонент связности графа, мы можем получить укладку на плоскости и всего графа. Итак пусть граф связен. Если , то очевидно планерен, поэтому предположим, что , а значит имеется по-крайней мере один блок в . Рассмотрим связный подграф графа блоков и точек сочленений графа такой, что - т.с. имеем . ИзДокажем индукцией по числу вершин в графе , что подграф графа состоящий из блоков графа принадлежащих графу планарен (далее будем говрить, что соответствует ).База индукции. Если , то граф тривиальный. Его единственная вершина — это блок графа , который по утверждению теоремы планарен.Индукционный переход. Пусть утверждение верно для . Рассмотрим , для которого , и соответствующий подграф графа . Докажем, что планарен.Положим — это блок графа являющийся висячей вершиной дерева , a — т.с. в смежная с в . планарен по утверждению теоремы, т.к. блоки графа совпадают с блоками графа . Заметим, что , т.к. - т.с., следовательно не висячая. Рассмотрим два случая:
Рассмотрим подграф графа соответствующий дереву . Поскольку T' - связен, степени вершин в соответствующих т.с. графа удовлетворяют предположению индукции, и очевидно также как и является подграфом графа блоков и точек сочленений , получим, что планарен по предположению индукции, т.к. .Из определения ребер дерева блоков и точек сочленений получаем, что графы леммы I, поэтому получим укладку из укладок так как это сделано в доказательстве леммы. получаем - планарен. А значит предположение индукции - верно. и содержат единственную общую точку - точку сочленения . Поскольку множество блоков принадлежащих состоит из и множества блоков , то . удовлетворяют условию | ||||||
Замечание. Доказательство теоремы непосредственно задает способ укладки графа
.Источники
Асанов М., Баранский В., Расин В. - Дискретная математика: Графы, матроиды, алгоритмы — Ижевск: ННЦ "Регулярная и хаотическая динамика", 2001.
H. Whitney - Non-separable and planar graphs - Trans. Amer. Math. Soc., 1932.