ДМП-автоматы и неоднознчность — различия между версиями
Строка 1: | Строка 1: | ||
{{В разработке}} | {{В разработке}} | ||
==Теоремы== | ==Теоремы== | ||
+ | {{Теорема | ||
+ | |id=t0 | ||
+ | |about=0 | ||
+ | |statement=Для каждой грамматики <tex>G = (V, T, P, S)</tex> и <tex>w</tex> из <tex>T*</tex> цепочка <tex>w</tex> имеет два разных дерева разбора тогда и только тогда, когда <tex>w</tex> имеет два разных левых порождения из <tex>S</tex>. | ||
+ | |proof= | ||
+ | (Необходимость) Внимательно рассмотрим построение левого порождения по дереву разбора в доказательстве теоремы (5.14). В любом случае, если у двух деревьев разбора впервые появляется узел, в котором применяются различные продукции, левые порождения, которые строятся, также используют разные продукции и, следовательно, являются различными. | ||
+ | (Достаточность) Хотя мы предварительно не описали непосредственное построение дерева разбора по левому порождению, идея его проста. Начнем построение дерева с корня, отмеченного стартовым символом. Рассмотрим порождение пошагово. На каждом шаге заменяется переменная, и эта переменная будет соответствовать построенному крайнему слева узлу дерева, не имеющему сыновей, но отмеченному этой переменной. По продукции, использованной на этом шаге левого порождения, определим, какие сы- новья должны быть у этого узла. Если существуют два разных порождения, то на первом шаге, где они различаются, построенные узлы получат разные списки сыновей, что гарантирует различие деревьев разбора. | ||
+ | }} | ||
+ | |||
+ | |||
{{Теорема | {{Теорема | ||
|id=t1 | |id=t1 |
Версия 00:14, 5 января 2015
Эта статья находится в разработке!
Теоремы
Теорема (0): |
Для каждой грамматики и из цепочка имеет два разных дерева разбора тогда и только тогда, когда имеет два разных левых порождения из . |
Доказательство: |
(Необходимость) Внимательно рассмотрим построение левого порождения по дереву разбора в доказательстве теоремы (5.14). В любом случае, если у двух деревьев разбора впервые появляется узел, в котором применяются различные продукции, левые порождения, которые строятся, также используют разные продукции и, следовательно, являются различными. (Достаточность) Хотя мы предварительно не описали непосредственное построение дерева разбора по левому порождению, идея его проста. Начнем построение дерева с корня, отмеченного стартовым символом. Рассмотрим порождение пошагово. На каждом шаге заменяется переменная, и эта переменная будет соответствовать построенному крайнему слева узлу дерева, не имеющему сыновей, но отмеченному этой переменной. По продукции, использованной на этом шаге левого порождения, определим, какие сы- новья должны быть у этого узла. Если существуют два разных порождения, то на первом шаге, где они различаются, построенные узлы получат разные списки сыновей, что гарантирует различие деревьев разбора. |
Теорема (1): |
Если для некоторого ДМП автомата , то имеет однозначную КС-грамматику |
Доказательство: |
Утверждаем, что конструкция теоремы порождает однозначную КС-грамматику , когда МП-автомат, к которому она применяется, детерминирован. Вначале вспомним (см. теорему 5.29), что для однозначности грамматики достаточно показать, что она имеет уникальные левые порождения. Предположим, допускает по пустому магазину. Тогда он делает это с помощью одной-единственной последовательности переходов, поскольку он детерминирован и не может работать после опустошения магазина. Зная эту последовательность переходов, мы можем однозначно определить выбор каждой продукции в левом порождении в . Правило автомата , на основании которого применяется продукция, всегда одно. Но правило, скажем, , может порождать много продукций грамматики , с различными состояниями в позициях, отражающих состояния после удаления каждого из , , ..., . Однако, поскольку детерминирован, осуществляется только одна из этих последовательностей переходов, поэтому только одна из этих продукций в действительности ведет к порождению . |
Теорема (2): |
Если для некоторого ДМП-автомата , то имеет однозначную КС-грамматику |
Доказательство: |
Пусть теореме 1 существует однозначная грамматика , порождающая язык , т.е. . будет “концевым маркером”, отсутствующим в цепочках языка , и пусть . Таким образом, цепочки языка представляют собой цепочки из , к которым дописан символ . Тогда имеет префиксное свойство, и для некоторого ДМП-автомата . ПоТеперь по грамматике Утверждаем, что построим , для которой . Для этого нужно лишь избавиться от маркера в цепочках. Будем рассматривать как переменную грамматики и введем продукцию ; остальные продукции и одинаковы. Поскольку , получаем, что . однозначна. Действительно, левые порождения в совпадают с левыми порождениями в , за исключением последнего шага в — изменения на . Таким образом, если бы терминальная цепочка имела два левых порождения в , то имела бы два порождения в . Поскольку однозначна, также однозначна. |