Построение по НКА эквивалентного ДКА, алгоритм Томпсона — различия между версиями
(→Алгоритм) |
|||
Строка 1: | Строка 1: | ||
== Описание == | == Описание == | ||
Алгоритм Томпсона строит по [[Недетерминированные конечные автоматы|НКА]] эквивалентный [[Детерминированные конечные автоматы|ДКА]] следующим образом: | Алгоритм Томпсона строит по [[Недетерминированные конечные автоматы|НКА]] эквивалентный [[Детерминированные конечные автоматы|ДКА]] следующим образом: | ||
− | * Помещаем в очередь <tex>Q</tex> множество, состоящее только из стартовой вершины. | + | * Начало. |
− | * Затем, пока очередь не пуста выполняем следующие действия: | + | * '''Шаг 1''' Помещаем в очередь <tex>Q</tex> множество, состоящее только из стартовой вершины. |
+ | * '''Шаг 2''' Затем, пока очередь не пуста выполняем следующие действия: | ||
** Достаем из очереди множество, назовем его <tex>q</tex> | ** Достаем из очереди множество, назовем его <tex>q</tex> | ||
− | ** Для каждого <tex>c \in \Sigma</tex> построим множество, содержащее состояния, в которые ведет <tex>c</tex> | + | ** Для каждого <tex>c \in \Sigma</tex> построим множество, содержащее состояния, в которые ведет символ <tex>c</tex> из каждого состояния из <tex>q</tex>. Затем положим построенное множество в очередь <tex>Q</tex> только если оно не лежало там раньше. Каждое такое множество в итоговом ДКА будет отдельной вершиной, в которую будут вести переходы по соответствующим символам. |
− | * Если в множестве <tex>q</tex> хотя бы одна из вершин была терминальной в НКА, то соответствующая данному множеству вершина в ДКА также будет терминальной. | + | ** Если в множестве <tex>q</tex> хотя бы одна из вершин была терминальной в НКА, то соответствующая данному множеству вершина в ДКА также будет терминальной. |
+ | * Конец | ||
== Построение эквивалентного ДКА по НКА == | == Построение эквивалентного ДКА по НКА == | ||
Строка 22: | Строка 24: | ||
Построенный ДКА эквивалентен данному НКА. | Построенный ДКА эквивалентен данному НКА. | ||
|proof= | |proof= | ||
− | #Докажем, что любое слово, которое принимает НКА, будет принято построенным ДКА. Заметим, что <tex>\forall q \in q_d, \forall c \in \Sigma, \forall p \in \delta(q, c): p \in \delta_d(q_d, c)</tex>. Рассмотрим слово <tex>w=w_1...w_m</tex>, которое принимает автомат НКА: <tex>\langle s, w_1w_2 | + | #Докажем, что любое слово, которое принимает НКА, будет принято построенным ДКА. Заметим, что <tex>\forall q \in q_d, \forall c \in \Sigma, \forall p \in \delta(q, c): p \in \delta_d(q_d, c)</tex>. Рассмотрим слово <tex>w=w_1...w_m</tex>, которое принимает автомат НКА: <tex>\langle s, w_1w_2 \dots w_m \rangle \vdash \langle u_1, w_2 \dots w_m \rangle \vdash \langle u_m, \varepsilon \rangle, u_m \in T</tex>. Проверим, что построенный ДКА тоже принимает это слово. Заметим, что <tex>s \in s_d</tex>, а, значит, исходя из нашего наблюдения, мы получаем, что <tex>u_1 \in {u_d}_1</tex>, где <tex>{u_d}_1 = \delta_d(s, w_1)</tex>. Далее, несложно заметить, что <tex>\forall i \leqslant m : u_i \in {u_d}_i</tex>, где <tex>\langle s_d, w_1w_2 \dots w_m \rangle \vdash \langle {u_d}_1, w_2 \dots w_m \rangle \vdash \langle {u_d}_i, w_{i + 1} \dots w_m\rangle</tex>. Таким образом, <tex>u_m \in {u_d}_m</tex>, а из определения терминальных состояний в построенном ДКА мы получаем, что <tex>{u_d}_m \in T_d</tex>, то есть наш ДКА тоже принимает cлово <tex>w</tex>. |
− | #Докажем, что любое слово, которое принимает построенный ДКА, принимает и НКА. Сначала сделаем наблюдение, что если <tex>q_d=\{q\}</tex>, и мы из него достигли по строке <tex>S</tex> какого-то состояния <tex>p_d</tex>, то <tex>\forall p \in p_d</tex> существует путь из <tex>q</tex> в <tex>p</tex> в НКА по строке <tex>S</tex>. Рассмотрим слово <tex>w=w_1 | + | #Докажем, что любое слово, которое принимает построенный ДКА, принимает и НКА. Сначала сделаем наблюдение, что если <tex>q_d=\{q\}</tex>, и мы из него достигли по строке <tex>S</tex> какого-то состояния <tex>p_d</tex>, то <tex>\forall p \in p_d</tex> существует путь из <tex>q</tex> в <tex>p</tex> в НКА по строке <tex>S</tex>. Рассмотрим слово <tex>w=w_1 \dots w_m</tex>, которое принимает автомат ДКА: <tex>\langle s_d, w_1w_2 \dots w_m \rangle \vdash \langle {u_d}_1, w_2 \dots w_m \rangle \vdash \langle {u_d}_m, \varepsilon \rangle, {u_d}_m \in T_d</tex>. Проверим, что НКА тоже принимает это слово. Так как <tex>s_d = \{s\}</tex>, и мы из <tex>s_d</tex> достигли <tex>{u_d}_m \in T_d</tex>, возьмём любое терминальное состояние <tex>u_m \in {u_d}_m</tex>. По нашему наблюдению в НКА есть путь из <tex>s</tex> в <tex>u_m</tex> по строке <tex>w</tex>, а, значит, НКА принимает это слово. |
Таким образом, множества слов, допускаемых ДКА и НКА, совпадают, то есть они эквивалентны. | Таким образом, множества слов, допускаемых ДКА и НКА, совпадают, то есть они эквивалентны. | ||
}} | }} |
Версия 09:17, 5 января 2015
Содержание
Описание
Алгоритм Томпсона строит по НКА эквивалентный ДКА следующим образом:
- Начало.
- Шаг 1 Помещаем в очередь множество, состоящее только из стартовой вершины.
- Шаг 2 Затем, пока очередь не пуста выполняем следующие действия:
- Достаем из очереди множество, назовем его
- Для каждого построим множество, содержащее состояния, в которые ведет символ из каждого состояния из . Затем положим построенное множество в очередь только если оно не лежало там раньше. Каждое такое множество в итоговом ДКА будет отдельной вершиной, в которую будут вести переходы по соответствующим символам.
- Если в множестве хотя бы одна из вершин была терминальной в НКА, то соответствующая данному множеству вершина в ДКА также будет терминальной.
- Конец
Построение эквивалентного ДКА по НКА
Пусть нам дан произвольный НКА:
.Построим по нему следующий ДКА:
, где:- ,
- ,
- ,
- .
Доказательство эквивалентности
Теорема: |
Построенный ДКА эквивалентен данному НКА. |
Доказательство: |
|
Алгоритм Томпсона
Данный алгоритм преобразовывает НКА в эквивалентный ДКА. Будем использовать вышеуказанный способ построения с одним дополнением — не будем учитывать состояния недостижимые из стартового. Поэтому в алгоритме используется обход в ширину.
Алгоритм
— очередь состояний, соответствующих множествам, состоящих из состояний НКА. — стартовое состояние НКА.
Automaton getDFAbyNFA(: Automaton): .push({s}) while ( ) .pop( ) for ( in ) = for ( in ) = if (not visited[ ]) .push( ) return
Асимптотика
Так как количество подмножеств множества состояний НКА не более, чем
, а каждое подмножество мы обрабатываем ровно один раз за время , получаем верхнюю оценку времени работы алгоритма — .Пример
Пусть нам дан недетерминированный конечный автомат:
По нашему заданию эквивалентного ДКА мы получаем:
- Помещаем в очередь множество из одной стартовой вершины — : .
- Достаём из очереди множество : .
- , кладём множество в очередь: .
- , нам не надо класть множество в очередь, так как оно уже там было.
- Достаём из очереди множество : .
- , нам не надо класть множество в очередь, так как оно уже там было.
- , нам не надо класть множество в очередь, так как оно уже там было.
- Помечаем все терминальные вершины, в данном случае — .
В итоге получаем ДКА, эквивалентный исходному: .