Построение по НКА эквивалентного ДКА, алгоритм Томпсона — различия между версиями
(→См. также) |
(→См. также) |
||
Строка 78: | Строка 78: | ||
* [[Минимизация ДКА, алгоритм за O(n^2) с построением пар различимых состояний]] | * [[Минимизация ДКА, алгоритм за O(n^2) с построением пар различимых состояний]] | ||
* [[Теорема Клини (совпадение классов автоматных и регулярных языков)]] | * [[Теорема Клини (совпадение классов автоматных и регулярных языков)]] | ||
+ | |||
+ | == Источники информации == | ||
+ | * ''Серебряков В.А.'' Теория и реализация языков программирования. М.: МЗ-Пресс, 2003 (1-е изд.) и 2006 (2-е изд) — С. 294. — ISBN 5-94073-094-9 | ||
[[Категория: Теория формальных языков]] | [[Категория: Теория формальных языков]] | ||
[[Категория: Автоматы и регулярные языки]] | [[Категория: Автоматы и регулярные языки]] |
Версия 09:50, 5 января 2015
Содержание
Описание
Алгоритм Томпсона строит по НКА эквивалентный ДКА следующим образом:
- Начало.
- Шаг 1 Помещаем в очередь множество, состоящее только из стартовой вершины.
- Шаг 2 Затем, пока очередь не пуста выполняем следующие действия:
- Достаем из очереди множество, назовем его
- Для каждого построим множество, содержащее состояния, в которые ведет символ из каждого состояния из . Затем положим построенное множество в очередь только если оно не лежало там раньше. Каждое такое множество в итоговом ДКА будет отдельной вершиной, в которую будут вести переходы по соответствующим символам.
- Если в множестве хотя бы одна из вершин была терминальной в НКА, то соответствующая данному множеству вершина в ДКА также будет терминальной.
- Конец
Построение эквивалентного ДКА по НКА
Пусть нам дан произвольный НКА:
.Построим по нему следующий ДКА:
, где:- ,
- ,
- ,
- .
Доказательство эквивалентности
Теорема: |
Построенный ДКА эквивалентен данному НКА. |
Доказательство: |
|
Алгоритм Томпсона
Данный алгоритм преобразовывает НКА в эквивалентный ДКА. Будем использовать вышеуказанный способ построения с одним дополнением — не будем учитывать состояния недостижимые из стартового. Поэтому в алгоритме используется обход в ширину.
Алгоритм
— очередь состояний, соответствующих множествам, состоящих из состояний НКА. — стартовое состояние НКА.
Automaton getDFAbyNFA(: Automaton): .push({s}) while ( ) .pop( ) for ( in ) = for ( in ) = if (not visited[ ]) .push( ) return
Асимптотика
Так как количество подмножеств множества состояний НКА не более, чем
, а каждое подмножество мы обрабатываем ровно один раз за время , получаем верхнюю оценку времени работы алгоритма — .Пример
Пусть нам дан недетерминированный конечный автомат:
По нашему заданию эквивалентного ДКА мы получаем:
- Помещаем в очередь множество из одной стартовой вершины — : .
- Достаём из очереди множество : .
- , кладём множество в очередь: .
- , нам не надо класть множество в очередь, так как оно уже там было.
- Достаём из очереди множество : .
- , нам не надо класть множество в очередь, так как оно уже там было.
- , нам не надо класть множество в очередь, так как оно уже там было.
- Помечаем все терминальные вершины, в данном случае — .
В итоге получаем ДКА, эквивалентный исходному:
См. также
- Регулярные языки: два определения и их эквивалентность
- Минимизация ДКА, алгоритм за O(n^2) с построением пар различимых состояний
- Теорема Клини (совпадение классов автоматных и регулярных языков)
Источники информации
- Серебряков В.А. Теория и реализация языков программирования. М.: МЗ-Пресс, 2003 (1-е изд.) и 2006 (2-е изд) — С. 294. — ISBN 5-94073-094-9