Сверхтьюринговые вычисления (гипервычисления) — различия между версиями

Материал из Викиконспекты
Перейти к: навигация, поиск
м (Машина Зенона)
Строка 14: Строка 14:
 
* Машина тьюринга которая может выполнить бесконечное число шагов.
 
* Машина тьюринга которая может выполнить бесконечное число шагов.
 
::Один из математических способов &mdash; Машина Зенона. Машина Зенона выполняет свой первый шаг за <tex dpi=150> 1 </tex> минуту, следующий шаг за <tex dpi=150> \frac{1}{2}</tex> минуты, следующий за <tex dpi=150> \frac{1}{4}</tex> и т.д.
 
::Один из математических способов &mdash; Машина Зенона. Машина Зенона выполняет свой первый шаг за <tex dpi=150> 1 </tex> минуту, следующий шаг за <tex dpi=150> \frac{1}{2}</tex> минуты, следующий за <tex dpi=150> \frac{1}{4}</tex> и т.д.
::Суммируя <tex dpi=150> 1+\frac{1}{2}+\frac{1}{4}</tex> (геометрическая прогрессия) мы видим, что машина выполняет бесконечно количество шагов за 2 минуты.
+
::Суммируя <tex dpi=150> 1+\frac{1}{2}+\frac{1}{4}...</tex> (геометрическая прогрессия) мы видим, что машина выполняет бесконечно количество шагов за 2 минуты.
  
 
*Вечная машина Тьюринга.
 
*Вечная машина Тьюринга.

Версия 20:05, 8 января 2015

Сверхтьюринговые вычисления

Сверхтьюринговыми вычислениями (или гипервычислениями (англ. hypercomputation)) называются такие вычисления, которые не могут быть проделаны на машине Тьюринга , а следовательно не исчислимы в рамках тезисов Черча-Тьюринга.

Такие гипотетические устройства Тьюрингом были рассмотрены еще в 1939 году. Это машины с оракулом. Под оракулом понимается некая сущность, способная «вычислять» невычислимые функции или решать алгоритмически неразрешимые проблемы. Тьюринг показал, что для таких машин проблемы, сформулированные относительно них самих (например, проблема останова машины с оракулом) ими же являются неразрешимыми. Это напоминает древний парадокс: может ли всемогущий бог создать камень, который сам не сможет поднять?.. Поэтому даже если сверхтьюринговые вычисления физически реализуемы, для них также найдутся неразрешимые проблемы.

Предполагаемые способы сверхтьюринговых вычислений:

  • Машина тьюринга которая может выполнить бесконечное число шагов.
Один из математических способов — Машина Зенона. Машина Зенона выполняет свой первый шаг за [math] 1 [/math] минуту, следующий шаг за [math] \frac{1}{2}[/math] минуты, следующий за [math] \frac{1}{4}[/math] и т.д.
Суммируя [math] 1+\frac{1}{2}+\frac{1}{4}...[/math] (геометрическая прогрессия) мы видим, что машина выполняет бесконечно количество шагов за 2 минуты.
  • Вечная машина Тьюринга.
Вечная машина Тьюринга это обобщение машина Зенона, которая может выполнить неопределенно продолжительное вычисление,
шаги в котором перенумерованы потенциально трансфинитными ординальными числами.
  • Artificial Recurrent Neural Network [1].
В 1994 Хава Сигельманн доказала, что ее новая вычислительная модель the Artificial Recurrent Neural Network (ARNN), может выполнить
гипервычисления, используя бесконечную точность. Также она предложила модель, основанную на бесконечной эволюции нейронных сетей, способную проводить ::гипервычисления.
  • Неограниченный детерминизм.
Техника, известная как неограниченный детерминизм, может позволять вычисление невычислимых функций. Это вопрос является предметом обсуждения в литературе.
  • Использование замкнутых времениподобных кривых[2], вопреки распространённому мнению, не позволяет выполнять сверхтьюринговые вычисления, так как отсутствует бесконечный объём памяти.

Машина Зенона

Определение:
Машина Зенона (англ. zeno machine) — это гипотетическая компьютерная модель, связанная с машиной Тьюринга, которая способна совершить счётное количество алгоритмических шагов за конечное время. В большинстве моделей вычислений такие машины не рассматриваются.

Некоторые функции, которые не могут быть вычислены на машине Тьюринга, могут быть вычислены с использованием машины Зенона. Например, на ней может быть решена проблема остановки (что иллюстрируется следующим псевдокодом):

Будем использовать двуленточную машину Зенона. На одной ленте будем симулировать машину Тюринга, а на второй записывать результат.

[math] p(M,x):[/math]
  записать 0 в первую ячейку на второй ленте ленте
  while true:
    смоделировать очередной шаг работы данной машины Тьюринга на данном входе на первой ленте
    if машина Тьюринга остановилась:
      записать 1 в первую ячейку на ленте
      break
  return первую ячейку на второй ленте

Такие вычисления, выходящие за рамки возможности машины Тьюринга, называются гипервычислениями. Стоит заметить, что проблема остановки для самой машины Зенона не может быть решена на машине Зенона.

Возможность супертьюринговых машин

Смысл двух приведенных ниже тезисов состоит в обосновании возможности сверхтьюринговых машин, способных осуществлять гипервычисления.

  • Процесс может быть использован в математических целях, если и только если его поведение на входе/выходе:
    • либо детерминистично, либо приблизительно детерминистично и вызываемая им ошибка может быть сведена к произвольно малой величине;
    • определяется за конечное число шагов.
  • Процесс может быть использован в его физических качествах, если и только если его поведение на входе/выходе в соответствии с научными данными может быть использовано для моделирования других специфических процессов.

Проекты супертьюринговых машин

Существует несколько десятков проектов супертьюринговых машин.

  • попытка отказаться от линейности времени: оно замедляется, ускоряется, замыкается. Как известно из физики, такие процессы действительно существуют;
  • делаются попытки использовать актуальную бесконечность: имеется в виду, что сумма бесконечного числа членов может иметь вполне определенное значение;
  • самые большие надежды возлагаются на квантовые компьютеры. Чтобы осуществить вычисление, во-первых, необходимо управлять кубитами, во-вторых, дать реализоваться квантовому алгоритму, в-третьих, измерить состояния кубитов регистра. В принципиальном отношении все три операции осуществимы.

См. также

Примечания

Источники информации