Оптимальный префиксный код с длиной кодового слова не более L бит — различия между версиями
Shersh (обсуждение | вклад) (→Сведение задачи о рюкзаке к генерации оптимального префиксного кода с длиной кодового слова не более L бит) |
|||
Строка 46: | Строка 46: | ||
При этом <tex>h_{i}</tex> — это длина кодового слова для <tex>i</tex>-го символа. Зная длины кодовых слов, легко восстановить и сам код. | При этом <tex>h_{i}</tex> — это длина кодового слова для <tex>i</tex>-го символа. Зная длины кодовых слов, легко восстановить и сам код. | ||
− | Из последнего утверждения и шага 2 легко заметить, что длина кодового слова, сгенерированного приведенным алгоритмом, действительно не превысит <tex>L</tex>. Оптимальность же кода следует из оптимальности решения задачи о рюкзаке. Действительно, частота символа - это вес предеметов, соответствующих ему. Значит, чем чаще символ встречается в тексте, тем реже он будет попадать в наш рюкзак (будет выгоднее брать предметы аналогичной ценности, но меньшего веса, соответствующие более редким символам), а значит, его код будет короче. | + | Из последнего утверждения и шага 2 легко заметить, что длина кодового слова, сгенерированного приведенным алгоритмом, действительно не превысит <tex>L</tex>. Это так, потому что мы создаем ровно L монет веса <tex>p_{i}</tex> (частота символа). А значит, если в худшем случае мы возьмем все монеты данного веса, то их количество не превысит <tex>L</tex>. Обратите внимание, что одинаковые частоты у разных символов считаются разными,т.е. если <tex> p_{i} = p_{j}, i != j</tex>, то при подсчете количества монет мы считаем монеты с частотой <tex>p_{i}</tex> и монеты с частотой <tex>p_{j}</tex> отдельно. |
+ | |||
+ | Оптимальность же кода следует из оптимальности решения задачи о рюкзаке. Действительно, частота символа - это вес предеметов, соответствующих ему. Значит, чем чаще символ встречается в тексте, тем реже он будет попадать в наш рюкзак (будет выгоднее брать предметы аналогичной ценности, но меньшего веса, соответствующие более редким символам), а значит, его код будет короче. | ||
== Восстановление ответа. == | == Восстановление ответа. == |
Версия 19:51, 9 января 2015
Оптимальный префиксный код с длиной кодового слова не более L бит — это префиксный код код, в котором длина каждого кодового слова не должна превышать заданной константы. Здесь будет приведен алгоритм, решающий эту задачу за время , где — максимальная длина кодового слова, — размер алфавита, c помощью сведения задачи к задаче о рюкзаке.
Содержание
- 1 Пример.
- 2 Сведение задачи о рюкзаке к генерации оптимального префиксного кода с длиной кодового слова не более L бит
- 3 Восстановление ответа.
- 4 Пример работы алгоритма генерации оптимального префиксного кода с длиной кодового слова не более L бит
- 5 Пример восстановления ответа.
- 6 См. также
- 7 Источники информации
Пример.
Данный алгоритм бывает полезен, когда нам нужно ограничить максимальную длину кодового слова, а при использовании алгоритма Хаффмана самому редко встречающемуся символу соответствует слишком длинное кодовое слово. Например, пусть дан алфавит из 5 символов
, а частоты символов являются степенями двойки: . Тогда классический код Хоффмана будет выглядеть следующим образом:Символ | Частота | Код |
---|---|---|
A | 1 | 1111 |
B | 2 | 1110 |
C | 4 | 110 |
D | 8 | 10 |
E | 16 | 0 |
Самое длинное кодовое слово здесь имеет длину
. Пусть мы хотим, чтобы слова в нашем коде были не длиннее трех бит. Тогда алгоритм, который будет описан ниже, генерирует такой код:Символ | Частота | Код |
---|---|---|
A | 1 | 000 |
B | 2 | 001 |
C | 4 | 010 |
D | 8 | 011 |
E | 16 | 1 |
Важно заметить следующий факт. В худшем случае все кодовые слова будут иметь длину
бит. Тогда мы можем закодировать символов. Таким образом, нельзя получить описанный выше код, если .Сведение задачи о рюкзаке к генерации оптимального префиксного кода с длиной кодового слова не более L бит
Пусть
— ограничение на длину кодового слова, а — частоты символов алфавита. Алгоритм генерации кода будет следующим:- Отсортируем символы алфавита в порядке возрастания их частот.
- Для каждого символа создадим предметов ценностью , каждый из которых имеет вес .
- С помощью задачи о рюкзаке выберем набор предметов суммарной ценностью ( — размер алфавита) с минимальным суммарным весом.
- Посчитаем массив , где — количество предметов ценностью , которые попали в наш набор.
При этом
— это длина кодового слова для -го символа. Зная длины кодовых слов, легко восстановить и сам код.Из последнего утверждения и шага 2 легко заметить, что длина кодового слова, сгенерированного приведенным алгоритмом, действительно не превысит
. Это так, потому что мы создаем ровно L монет веса (частота символа). А значит, если в худшем случае мы возьмем все монеты данного веса, то их количество не превысит . Обратите внимание, что одинаковые частоты у разных символов считаются разными,т.е. если , то при подсчете количества монет мы считаем монеты с частотой и монеты с частотой отдельно.Оптимальность же кода следует из оптимальности решения задачи о рюкзаке. Действительно, частота символа - это вес предеметов, соответствующих ему. Значит, чем чаще символ встречается в тексте, тем реже он будет попадать в наш рюкзак (будет выгоднее брать предметы аналогичной ценности, но меньшего веса, соответствующие более редким символам), а значит, его код будет короче.
Восстановление ответа.
- Отсортируем все символы по возрастанию длины кодового слова, которое им соответствует, а при равенстве длин — в алфавитном порядке.
- Первому символу сопоставим код, состоящий из нулей, соответствующей длины.
- Каждому следующему символу сопоставим следующее двоичное число. При этом если его длина меньше необходимой, то допишем нули справа.
Заметим, что при генерации каждого следующего кодового слова, в качестве его префикса выступает последовательность, лексикографически большая, чем предыдущее кодовое слово (т.к. мы берем следующее двоичное число), а значит ни для каких двух кодовых слов одно не может быть префиксом другого. Т.е. код, сгенерированный таким образом является префиксным.
Пример работы алгоритма генерации оптимального префиксного кода с длиной кодового слова не более L бит
Пусть
— алфавит из трех различных символов, — соответствующий ему набор частот. Пусть — ограничение на длину кодового слова.Сначала создадим необходимый набор предметов;
Символ | Частота | Предметы |
---|---|---|
Решим задачу о рюкзаке для заданного набора и выберем предметы суммарной ценностью
с минимальным суммарным весом. В нашем случае в оптимальный набор попадут следующие предметы:
Посчитаем массив
:
Итак, мы получили длины кодовых слов для символов. Осталось восстановить ответ.
Пример восстановления ответа.
Итак, у нас есть
— алфавит из различных символов, а также — соответсвующие длины кодовых слов. Отсортируем символы в соответсвии с этими длинами.Сопоставим первому символу код, состоящий из 1 нуля:
Сопоставим следующему символу следующее двоичное число. Т.к. длина кода увеличилась на один, то припишем справа ноль:
Сопоставим следующему символу следующее двоичное число.