Теорема о существовании простого цикла в случае существования цикла — различия между версиями
Iloskutov (обсуждение | вклад) (Добавлена иллюстрация к лемме) |
Iloskutov (обсуждение | вклад) (Исправил иллюстрацию к теореме) |
||
Строка 18: | Строка 18: | ||
Выберем в графе минимальный по количеству рёбер цикл (он существует, потому что количество рёбер в любом цикле — натуральное число <ref>[[Натуральные и целые числа#.D0.A1.D1.83.D1.89.D0.B5.D1.81.D1.82.D0.B2.D0.BE.D0.B2.D0.B0.D0.BD.D0.B8.D0.B5_.D0.BD.D0.B0.D0.B8.D0.BC.D0.B5.D0.BD.D1.8C.D1.88.D0.B5.D0.B3.D0.BE_.D1.8D.D0.BB.D0.B5.D0.BC.D0.B5.D0.BD.D1.82.D0.B0|Существование наименьшего элемента в любом подмножестве <tex>\Bbb N</tex>]]</ref>). Предположим, что он не простой. Но тогда он содержит дважды одну и ту же вершину, т. е. содержит в себе цикл меньшего размера, что противоречит тому, что наш цикл минимальный. Таким образом, этот цикл — простой.}} | Выберем в графе минимальный по количеству рёбер цикл (он существует, потому что количество рёбер в любом цикле — натуральное число <ref>[[Натуральные и целые числа#.D0.A1.D1.83.D1.89.D0.B5.D1.81.D1.82.D0.B2.D0.BE.D0.B2.D0.B0.D0.BD.D0.B8.D0.B5_.D0.BD.D0.B0.D0.B8.D0.BC.D0.B5.D0.BD.D1.8C.D1.88.D0.B5.D0.B3.D0.BE_.D1.8D.D0.BB.D0.B5.D0.BC.D0.B5.D0.BD.D1.82.D0.B0|Существование наименьшего элемента в любом подмножестве <tex>\Bbb N</tex>]]</ref>). Предположим, что он не простой. Но тогда он содержит дважды одну и ту же вершину, т. е. содержит в себе цикл меньшего размера, что противоречит тому, что наш цикл минимальный. Таким образом, этот цикл — простой.}} | ||
− | [[Файл:Simple cycle.png|thumb|580px|center|В графе минимальный цикл включает в себя | + | [[Файл:Simple cycle.png|thumb|580px|center|В графе минимальный цикл включает в себя три ребра — например, [2 - 5 - 6] (выделен <font color="red">красным</font>). Согласно теореме, он является простым.<br>]] |
== Замечания == | == Замечания == |
Версия 14:29, 10 января 2015
Лемма: |
Наличие двух различных рёберно простых путей между какими-либо двумя вершинами неориентированного графа равносильно наличию цикла в этом графе. |
Доказательство: |
Предположим, что в графе существует два различных рёберно простых пути между вершинами и . Пусть это будут пути и . Пусть их наибольший общий префикс заканчивается в вершине . Заметим, что , т.к. пути различны. Рассмотрим суффиксы путей и : и соответственно. Найдем первую совпадающую вершину в и , не равную . Осталось заметить, что замкнутый путь , полученный объединением части пути вместе с частью цепи , является циклическим путем. Действительно, в путях и двух одинаковых рёбер подряд не бывает, т.к. это рёберно простые пути, а рёбра, смежные с и , не совпадают по построению. Циклический путь является представителем некоторого цикла в графе .Предположим, что в графе существует цикл и пусть циклический путь — его представитель. Найдем первую точку пересечения с самим собой. Такая точка существует, т.к. путь замкнутый. Рассмотрим циклический путь : он простой, т. к. если это неверно и существует вершина , то в вершина повторяется раньше, чем . Теперь элементарно взяв две вершины и легко заметить, что существует два различных рёберно непересекающихся пути между ними: и . |
Теорема: |
Если в неориентированном графе существует цикл, то в этом графе существует простой цикл. |
Доказательство: |
Выберем в графе минимальный по количеству рёбер цикл (он существует, потому что количество рёбер в любом цикле — натуральное число [1]). Предположим, что он не простой. Но тогда он содержит дважды одну и ту же вершину, т. е. содержит в себе цикл меньшего размера, что противоречит тому, что наш цикл минимальный. Таким образом, этот цикл — простой. |
Замечания
- Так как вершинно-простой путь всегда является рёберно-простым, первая теорема справедлива и для вершинно-простых путей (усиление условия).
- Так как вершинно-простой цикл всегда является рёберно-простым, первая теорема справедлива и для рёберно-простого цикла (ослабление результата).
-
Утверждение: Если две вершины графа лежат на цикле, то они лежат на простом цикле.в общем случае неверно, так как эти вершины могут лежать в разных компонентах вершинной или рёберной двусвязности: все пути из одной вершины в другую будут содержать одну и ту же точку сочленения или один и тот же мост.
Примечания
См. также