Использование обхода в глубину для топологической сортировки — различия между версиями
(Отмена правки 28529 участника 85.114.24.146 (обсуждение)) |
м |
||
Строка 1: | Строка 1: | ||
− | '''Топологическая сортировка''' [[Ориентированный граф|ориентированного]] [[Основные определения теории графов|ациклического графа]] <tex>G = (V, E)</tex> представляет собой | + | '''Топологическая сортировка''' [[Ориентированный граф|ориентированного]] [[Основные определения теории графов|ациклического графа]] <tex>G = (V, E)</tex> представляет собой упорядочение [[Основные определения теории графов|вершин]] таким образом, что для любого ребра <tex>(u, v) \in E(G)</tex> номер вершины <tex>u</tex> меньше номера вершины <tex>v\ </tex>. |
== Применение == | == Применение == |
Версия 19:33, 11 января 2015
Топологическая сортировка ориентированного ациклического графа представляет собой упорядочение вершин таким образом, что для любого ребра номер вершины меньше номера вершины .
Содержание
Применение
Топологическая сортировка применяется в самых разных ситуациях, например при создании параллельных алгоритмов, когда по некоторому описанию алгоритма нужно составить граф зависимостей его операций и, отсортировав его топологически, определить, какие из операций являются независимыми и могут выполняться параллельно (одновременно). Примером использования топологической сортировки может служить создание карты сайта, где имеет место древовидная система разделов. Также топологическая сортировка применяется при обработке исходного кода программы в некоторых компиляторах и IDE, где строится граф зависимостей между сущностями, после чего они инициализируются в нужном порядке, либо выдается ошибка о циклической зависимости.
Постановка задачи
Теорема: | ||||||
— ациклический ориентированный граф, тогда | ||||||
Доказательство: | ||||||
Определим алгоритма dfs. Рассмотрим функцию . Очевидно, что такая функция подходит под критерий функции из условия теоремы, если выполняется следующее утверждение: как порядковый номер окраски вершины в черный цвет в результате работы
| ||||||
Алгоритм
Из определения функции
мгновенно следует алгоритм топологической сортировки:doTopSort(graph G) { fill(visited, false); time = 0; for (vertex v : v in graph G) { if (!visited[v]) { dfs(v); } } }
dfs(vertex u) { visited[u] = true; for (vertex v : exists edge uv) { if (!visited[v]) { dfs(v); } } topSortAnswer[u] = n - time++; }
Время работы этого алгоритма соответствует времени работы алгоритма поиска в глубину, то есть равно
.Источники
- Томас Кормен, Чарльз Лейзерсон, Рональд Ривест, Клиффорд Штайн. Алгоритмы: построение и анализ, второе издание. Пер. с англ. — Издательский дом "Вильямс", 2007. — 1296 с. — Глава 22. Элементарные алгоритмы для работы с графами.
- Топологическая сортировка на habrahabr