Паросочетания: основные определения, теорема о максимальном паросочетании и дополняющих цепях — различия между версиями
Shiplayer (обсуждение | вклад) (→Литература) |
Shiplayer (обсуждение | вклад) |
||
Строка 16: | Строка 16: | ||
{{Определение | {{Определение | ||
|definition= '''Сбалансированная цепь''' — чередующаяся цепь, у которой один конец свободен, а другой покрыт.}} | |definition= '''Сбалансированная цепь''' — чередующаяся цепь, у которой один конец свободен, а другой покрыт.}} | ||
+ | |||
+ | == Свойства == | ||
+ | |||
+ | В любом графе без изолированных вершин, число паросочетания и число рёберного покрытия в сумме дают число вершин. Если существует совершенное паросочетание, то оба числа равны <tex>|V|</tex> / 2. | ||
== Теорема о максимальном паросочетании и дополняющих цепях == | == Теорема о максимальном паросочетании и дополняющих цепях == |
Версия 22:10, 11 января 2015
Содержание
Паросочетание в двудольном графе
Определение: |
Паросочетание (англ. mathing) | в двудольном графе — произвольное множество ребер двудольного графа, такое что никакие два ребра не имеют общей вершины.
Определение: |
Вершины двудольного графа, инцидентные ребрам паросочетания | , называются покрытыми, а неинцидентные — свободными.
Определение: |
Паросочетание | графа называется полным, если оно покрывает все вершины графа.
Определение: |
Чередующаяся цепь — путь в двудольном графе, для любых двух соседних ребер которого верно, что одно из них принадлежит паросочетанию | , а другое нет.
Определение: |
Дополняющая цепь (или увеличивающая цепь) — чередующаяся цепь, у которой оба конца свободны. |
Определение: |
Уменьшающая цепь — чередующаяся цепь, у которой оба конца покрыты. |
Определение: |
Сбалансированная цепь — чередующаяся цепь, у которой один конец свободен, а другой покрыт. |
Свойства
В любом графе без изолированных вершин, число паросочетания и число рёберного покрытия в сумме дают число вершин. Если существует совершенное паросочетание, то оба числа равны
/ 2.Теорема о максимальном паросочетании и дополняющих цепях
Теорема: |
Паросочетание в двудольном графе является максимальным тогда и только тогда, когда в нет дополняющей цепи. |
Доказательство: |
Пусть в двудольном графе с максимальным паросочетанием существует дополняющая цепь. Тогда пройдя по ней и заменив вдоль нее все ребра, входящие в паросочетание, на невходящие и наоборот, мы получим большее паросочетание. То есть не являлось максимальным. Противоречие.Рассмотрим паросочетание в графе и предположим, что - не наибольшее. Докажем, что тогда имеется увеличивающая цепь относительно . Пусть - другое паросочетание и . Рассмотрим подграф графа , образованный теми ребрами, которые входят в одно и только в одно из паросочетаний , . Иначе говоря, множеством ребер графа является симметрическая разность . В графе каждая вершина инцидентна не более чем двум ребрам (одному из и одному из ), т.е. имеет степень не более двух. В таком графе каждая компонента связности - путь или цикл. В каждом из этих путей и циклов чередуются ребра из и . Так как , имеется компонента, в которой ребер из содержится больше, чем ребер из . Это может быть только путь, у которого оба концевых ребра принадлежат . Заметим, что относительно этот путь является увеличивающей (дополняющей) цепью. |
Источники
- wikipedia.org — Matching (graph theory)
- Асанов М. О., Баранский В. А., Расин В. В. — Дискретная математика: Графы, матроиды, алгоритмы. ISBN 978-5-8114-1068-2