Разрешимые (рекурсивные) языки — различия между версиями
Shersh (обсуждение | вклад) м (→Основные определения) |
|||
| Строка 26: | Строка 26: | ||
Другими словами, ''универсальный язык'' {{---}} это язык всех таких пар "программа и её вход", что программа на входе возвращает <tex>1</tex>. | Другими словами, ''универсальный язык'' {{---}} это язык всех таких пар "программа и её вход", что программа на входе возвращает <tex>1</tex>. | ||
| − | + | Рассмотрим данное определение более детально, для чего докажем вспомогательную лемму: | |
| − | + | {{Лемма | |
| + | |statement= | ||
| + | Существует биекция между строками и натуральными числами. | ||
| + | |proof= | ||
| + | Приведем пример такой биекции: | ||
| + | |||
| + | Занумеруем подряд все строки длинны <tex>1</tex>, затем все строки длинны <tex>2</tex> и так далее {{---}} нумерация названий столбцов в <tex>Excel</tex>, таким образом, каждому натуральному числу соответствует некоторая строка и наоборот. | ||
| + | }} | ||
| + | |||
| + | Биекция между строками и натуральными числами нам нужна, чтобы передавать пары "текст программы, текст входных данных" в качестве аргументов функций. Передавать можно в следующем виде: | ||
| + | |||
| + | <tex>2^{\mathrm{code}} \cdot 3^{\mathrm{input}}</tex>, где <tex>code, \ input</tex> {{---}} есть натуральные числа, соотвествующие тексту программы и тексту входных данных соответственно. | ||
Далее считаем, что входные данные программы и сама программа расположены над одним алфавитом <tex>\Sigma</tex>. | Далее считаем, что входные данные программы и сама программа расположены над одним алфавитом <tex>\Sigma</tex>. | ||
| Строка 53: | Строка 64: | ||
Множество всех рациональных чисел, меньших числа <tex>e</tex> (основания натуральных логарифмов) или <tex>\pi</tex>, разрешимо. | Множество всех рациональных чисел, меньших числа <tex>e</tex> (основания натуральных логарифмов) или <tex>\pi</tex>, разрешимо. | ||
|proof= | |proof= | ||
| − | Для чисел <tex>e, \ \pi</tex> существуют различные техники нахождения их точного представления, одна их которых описана в [http://www.mathpropress.com/stan/bibliography/spigot.pdf | + | Для чисел <tex>e, \ \pi</tex> существуют различные техники нахождения их точного представления, одна их которых описана в статье<ref>[http://www.mathpropress.com/stan/bibliography/spigot.pdf «A Spigot Algorithm for the Digits of Pi»]</ref>, таким образом, возможно получить необходимый знак чисел <tex>e, \ \pi</tex> за конечное время. |
Десятичное представление рационального числа <tex>r</tex> может быть получено с любой точностью. | Десятичное представление рационального числа <tex>r</tex> может быть получено с любой точностью. | ||
| Строка 65: | Строка 76: | ||
'''return''' 0 | '''return''' 0 | ||
'''for''' (i = 1 .. <tex>\infty </tex>) | '''for''' (i = 1 .. <tex>\infty </tex>) | ||
| − | '''if''' (getDigit(<tex>e</tex>, i) > getDigit(<tex>r</tex>, i)) <font color="green">// getDigit {{---}} функция, которая получает i- | + | '''if''' (getDigit(<tex>e</tex>, i) > getDigit(<tex>r</tex>, i)) <font color="green">// getDigit {{---}} функция, которая получает i-ую цифру вещественной части переданного числа</font> |
'''return''' 1 | '''return''' 1 | ||
'''if''' (getDigit(<tex>e</tex>, i) < getDigit(<tex>r</tex>, i)) | '''if''' (getDigit(<tex>e</tex>, i) < getDigit(<tex>r</tex>, i)) | ||
| Строка 138: | Строка 149: | ||
Из предположения о разрешимости универсального языка мы пришли к противоречию. | Из предположения о разрешимости универсального языка мы пришли к противоречию. | ||
}} | }} | ||
| + | |||
| + | == Примечания == | ||
| + | |||
| + | <references /> | ||
== Источники информации == | == Источники информации == | ||
| Строка 143: | Строка 158: | ||
* [http://en.wikipedia.org/wiki/Recursive_language Wikipedia — Recursive language] | * [http://en.wikipedia.org/wiki/Recursive_language Wikipedia — Recursive language] | ||
* [http://ru.wikipedia.org/wiki/%D0%A0%D0%B5%D0%BA%D1%83%D1%80%D1%81%D0%B8%D0%B2%D0%BD%D1%8B%D0%B9_%D1%8F%D0%B7%D1%8B%D0%BA Википедия — Рекурсивный язык] | * [http://ru.wikipedia.org/wiki/%D0%A0%D0%B5%D0%BA%D1%83%D1%80%D1%81%D0%B8%D0%B2%D0%BD%D1%8B%D0%B9_%D1%8F%D0%B7%D1%8B%D0%BA Википедия — Рекурсивный язык] | ||
| − | |||
[[Категория: Теория формальных языков]] | [[Категория: Теория формальных языков]] | ||
[[Категория: Теория вычислимости]] | [[Категория: Теория вычислимости]] | ||
Версия 13:59, 12 января 2015
Содержание
Основные определения
| Определение: |
| Рекурсивный язык (англ. recursive language) — язык, для которого существует программа |
| Определение: |
| Язык называется разрешимым, если существует такая вычислимая функция . |
Если мы рассматриваем язык как проблему, то проблема называется разрешимой, если язык рекурсивный. В противном случае проблема называется неразрешимой. Но часто данные понятия просто отождествляются.
| Определение: |
| Класс всех разрешимых (рекурсивных) языков (англ. Class of decidable (recursive) languages) часто обозначается буквой . |
| Определение: |
| Универсальный язык (англ. universal language) . |
Другими словами, универсальный язык — это язык всех таких пар "программа и её вход", что программа на входе возвращает .
Рассмотрим данное определение более детально, для чего докажем вспомогательную лемму:
| Лемма: |
Существует биекция между строками и натуральными числами. |
| Доказательство: |
|
Приведем пример такой биекции: Занумеруем подряд все строки длинны , затем все строки длинны и так далее — нумерация названий столбцов в , таким образом, каждому натуральному числу соответствует некоторая строка и наоборот. |
Биекция между строками и натуральными числами нам нужна, чтобы передавать пары "текст программы, текст входных данных" в качестве аргументов функций. Передавать можно в следующем виде:
, где — есть натуральные числа, соотвествующие тексту программы и тексту входных данных соответственно.
Далее считаем, что входные данные программы и сама программа расположены над одним алфавитом .
Примеры разрешимых множества
| Утверждение: |
Язык чётных чисел разрешим. |
|
Приведём программу, разрешающую язык чётных чисел: if return 1 else return 0Заметим, что программа нигде не может зависнуть. |
| Утверждение: |
Множество всех рациональных чисел, меньших числа (основания натуральных логарифмов) или , разрешимо. |
|
Для чисел существуют различные техники нахождения их точного представления, одна их которых описана в статье[1], таким образом, возможно получить необходимый знак чисел за конечное время. Десятичное представление рационального числа может быть получено с любой точностью. Приведем программу, разрешающую данную проблему для числа : if ( < 2) return 1 if ( > 3) return 0 for (i = 1 .. ) if (getDigit(, i) > getDigit(, i)) // getDigit — функция, которая получает i-ую цифру вещественной части переданного числа return 1 if (getDigit(, i) < getDigit(, i)) return 0Так как число иррационально, то ответ будет найден за конечное время. |
| Утверждение: |
Множество тех , для которых в числе есть не менее девяток подряд, разрешимо. |
|
Предположим, что в числе встречается девяток подряд, тогда, логично, что встречается и любое число девяток меньших . Рассмотрим все программы семейства:
return 1
if return 1 else return 0 if return 1 else return 0
if return 1 else return 0 По доказанному выше, какая-то программа из этого семейства будет разрешителем для искомого множества. Значит, искомое множество разрешимо. |
Примеры неразрешимых множества
| Утверждение: |
Универсальный язык неразрешим. |
|
Приведём доказательство от противного. Пусть язык разрешим, тогда существует программа
if while true else return 1 Рассмотрим вызов :
|
Примечания
Источники информации
- Н. К. Верещагин, А. Шень. Лекции по математической логике и теории алгоритмов. Часть 3. Вычислимые функции. — М.: МЦНМО, 1999. С. 134. ISBN 5-900916-36-7
- Wikipedia — Recursive language
- Википедия — Рекурсивный язык