Теоретико-множественные операции над графами — различия между версиями
Aganov (обсуждение | вклад) |
Aganov (обсуждение | вклад) |
||
Строка 2: | Строка 2: | ||
Пусть [[Основные_определения_теории_графов|графы]] <tex>G_1</tex> и <tex>G_2</tex> имеют непересекающиеся множества вершин <tex>V_1</tex> и <tex>V_2</tex> и непересекающиеся множества ребер <tex>X_1</tex> и <tex>X2</tex>. | Пусть [[Основные_определения_теории_графов|графы]] <tex>G_1</tex> и <tex>G_2</tex> имеют непересекающиеся множества вершин <tex>V_1</tex> и <tex>V_2</tex> и непересекающиеся множества ребер <tex>X_1</tex> и <tex>X2</tex>. | ||
− | |||
{{Определение | {{Определение | ||
|id = obedinenie | |id = obedinenie | ||
Строка 8: | Строка 7: | ||
'''Объединением''' (англ. ''union'') <tex>G_1 \cup G_2</tex> называется граф, множеством вершин которого является <tex>V=V_1 \cup V_2</tex>, а множество ребер <tex>X=X_1 \cup X_2</tex>. | '''Объединением''' (англ. ''union'') <tex>G_1 \cup G_2</tex> называется граф, множеством вершин которого является <tex>V=V_1 \cup V_2</tex>, а множество ребер <tex>X=X_1 \cup X_2</tex>. | ||
}} | }} | ||
− | |||
{{Определение | {{Определение | ||
|id = soedinenie | |id = soedinenie | ||
Строка 15: | Строка 13: | ||
}} | }} | ||
[[Файл:соединение.png|thumb|1100px|center]] | [[Файл:соединение.png|thumb|1100px|center]] | ||
− | |||
{{Определение | {{Определение | ||
|id = proizvedenie | |id = proizvedenie | ||
Строка 24: | Строка 21: | ||
}} | }} | ||
[[Файл:произведение.png|thumb|1100px|center]] | [[Файл:произведение.png|thumb|1100px|center]] | ||
− | |||
{{Определение | {{Определение | ||
|id = compozicia | |id = compozicia | ||
Строка 60: | Строка 56: | ||
<tex>G_1</tex> и <tex>G_2</tex> — [[Основные_определения_теории_графов|двудольные]] графы. Тогда <tex>G = G_1 \times G_2</tex> — двудольный граф. | <tex>G_1</tex> и <tex>G_2</tex> — [[Основные_определения_теории_графов|двудольные]] графы. Тогда <tex>G = G_1 \times G_2</tex> — двудольный граф. | ||
|proof= | |proof= | ||
− | Пусть цвет | + | Пусть цвет у левых долей <tex>G_1</tex> и <tex>G_2</tex> будет <text>0</tex>, а правых <tex>1</text>. |
А цвет каждой вершины <tex>v = (v_1, v_2)</tex> графа <tex>G</tex> будет равен <tex>c(v) = (c(v_1) + c(v_2)) \bmod 2</tex>. | А цвет каждой вершины <tex>v = (v_1, v_2)</tex> графа <tex>G</tex> будет равен <tex>c(v) = (c(v_1) + c(v_2)) \bmod 2</tex>. | ||
Версия 17:36, 12 января 2015
Содержание
Пусть графы и имеют непересекающиеся множества вершин и и непересекающиеся множества ребер и .
Определение: |
Объединением (англ. union) | называется граф, множеством вершин которого является , а множество ребер .
Определение: |
Соединением (англ. graph join) | называется граф, который состоит из и всех ребер, соединяющих и .
Определение: |
Произведением (англ. cartesian product)
| называется граф с множеством вершин равным декартовому произведению . Множество ребер определяется следующим образом:
Определение: |
Композицией (англ. lexicographical product)
| называется граф с множеством вершин равным декартовому произведению . Множество ребер определяется следующим образом:
Лемма (о произведении регулярных графов): |
регулярные графы. Тогда — регулярный граф. и — |
Доказательство: |
Пусть степень графов Рассмотрим любую вершину графа и будут и соответственно. : у нее смежных вершин. Значит граф регулярный. |
Лемма (о композиции регулярных графов): |
и — регулярные графы. Тогда — регулярный граф. |
Доказательство: |
Пусть степень графов Рассмотрим любую вершину графа и будут и соответственно. : у нее смежных вершин. Значит граф регулярный. |
Лемма (о произведении двудольных графов): |
двудольные графы. Тогда — двудольный граф. и — |
Доказательство: |
Пусть цвет у левых долей и будет <text>0</tex>, а правых графа будет равен .Рассмотрим любую пару смежных вершин и из графа , два случая:
|
См. также
Источники информации
- Харари Ф. Теория графов / пер. с англ. — изд. 1-ое, с.35