Неотделимые множества — различия между версиями
Строка 45: | Строка 45: | ||
Заметим, что <tex>g(n)</tex> всюду определена и является продолжением <tex>f(n)</tex>, что противоречит лемме 2. | Заметим, что <tex>g(n)</tex> всюду определена и является продолжением <tex>f(n)</tex>, что противоречит лемме 2. | ||
}} | }} | ||
+ | |||
+ | == Примеры неотделимых множеств == | ||
+ | |||
+ | * Пусть <tex>\phi</tex> вычислимая функция, тогда <tex>A = \{e : \phi_e(0) = 0 \}</tex> и <tex>B = \{e : \phi_e(0) = 1\}</tex> {{---}} неотделимые множества (Gasarch 1998, p. 1047). | ||
+ | |||
+ | * Пусть <tex>\phi</tex> Гёделева нумерация для формул в арифметики Пьяно, тогда <tex>A = \{\phi(\psi) : PA \vdash \psi \}</tex> и <tex>B = \{\phi(\psi) : PA \vdash \neg\psi \}</tex> {{---}} неотделимые множества (Smullyan 1958). | ||
+ | |||
+ | == Решаемые задачи == | ||
+ | |||
+ | |||
+ | {{Определение | ||
+ | |definition = '''Полное двоичное дерево''' {{---}} множество всех двоичных слов (конечных последовательностей нулей и единиц); его элементы называют вершинами дерева; пустое слово является корнем этого дерева, а слова <tex>x_0</tex> и <tex>x_1</tex> являются сыновьями вершины <tex>x</tex>, которая является отцом своих сыновей. Поддеревом полного двоичного дерева называют множество вершин, которое вместе с каждой вершиной содержит её отца. | ||
+ | }} | ||
+ | |||
+ | {{Лемма | ||
+ | |author=Кёниг | ||
+ | |statement=Бесконечное поддерево всегда имеет бесконечную ветвь (последовательность вершин, в которой каждая следующая является сыном предыдущей). | ||
+ | }} | ||
+ | |||
+ | |||
+ | Можно показать, что эффективный вариант леммы Кёнига неверен: существует бесконечное разрешимое поддерево полного двоичного дерева, не имеющее вычислимой бесконечной ветви. (Взяв пару перечислимых неотделимых множеств, можно построить дерево, в котором любая бесконечная ветвь поворачивает направо в точках первого множества и налево в точках второго. При этом поддерево можно сделать разрешимым, так как запрет поворота можно наложить на произвольно высоком уровне, когда выяснится принадлежность одному из множеств). | ||
== Источники информации == | == Источники информации == | ||
Строка 50: | Строка 71: | ||
* Н. К. Верещагин, А. Шень. Лекции по математической логике и теории алгоритмов. Часть 3. Вычислимые функции. — М.: МЦНМО, 1999. с. 20, с. 68. ISBN 5-900916-36-7 | * Н. К. Верещагин, А. Шень. Лекции по математической логике и теории алгоритмов. Часть 3. Вычислимые функции. — М.: МЦНМО, 1999. с. 20, с. 68. ISBN 5-900916-36-7 | ||
* [http://en.wikipedia.org/wiki/Recursively_inseparable_sets Wikipedia - Recursively inseparable sets] | * [http://en.wikipedia.org/wiki/Recursively_inseparable_sets Wikipedia - Recursively inseparable sets] | ||
+ | * Gasarch, William (1998), "A survey of recursive combinatorics", Handbook of recursive mathematics, Vol. 2, Stud. Logic Found. Math. 139, Amsterdam: North-Holland, pp. 1041–1176, MR 1673598 | ||
+ | * Smullyan, Raymond M. (1958), "Undecidability and recursive inseparability", Zeitschrift für Mathematische Logik und Grundlagen der Mathematik 4: 143–147 | ||
[[Категория: Теория формальных языков]] | [[Категория: Теория формальных языков]] | ||
[[Категория: Теория вычислимости]] | [[Категория: Теория вычислимости]] |
Версия 22:50, 12 января 2015
Лемма (1): |
Существует вычислимая функция, не имеющая всюду определенного вычислимого продолжения. |
Доказательство: |
Рассмотрим функцию универсальная функция. , где —Предположим, у нее существует всюду определенное продолжение и .По определению универсальной функции для некоторого .Поскольку Таким образом, построенная функция всюду определена, то . Значит, определено значение и . Получили противоречие. не имеет всюду определенного вычислимого продолжения. |
Лемма (2): |
Существует вычислимая функция, значения которой принадлежат множеству , не имеющая всюду определенного вычислимого продолжения. |
Доказательство: |
Рассмотрим функцию Предположим, у нее существует всюду определенное продолжение Поскольку для некоторого . всюду определена, то и определено значение . Но по построению функции видим, что . Получили противоречие. |
Теорема: |
Существуют такие непересекающиеся перечислимые множества и , что не существует таких разрешимых множеств и , что , , , . Такие множества и называют неотделимыми (англ. inseparable sets). |
Доказательство: |
Рассмотрим множества и , где — функция из леммы 2.Пусть существуют Заметим, что и , удовлетворяющие указанным свойствам, тогда вычислима характеристическая функция множества . всюду определена и является продолжением , что противоречит лемме 2. |
Примеры неотделимых множеств
- Пусть вычислимая функция, тогда и — неотделимые множества (Gasarch 1998, p. 1047).
- Пусть Гёделева нумерация для формул в арифметики Пьяно, тогда и — неотделимые множества (Smullyan 1958).
Решаемые задачи
Определение: |
Полное двоичное дерево — множество всех двоичных слов (конечных последовательностей нулей и единиц); его элементы называют вершинами дерева; пустое слово является корнем этого дерева, а слова | и являются сыновьями вершины , которая является отцом своих сыновей. Поддеревом полного двоичного дерева называют множество вершин, которое вместе с каждой вершиной содержит её отца.
Лемма (Кёниг): |
Бесконечное поддерево всегда имеет бесконечную ветвь (последовательность вершин, в которой каждая следующая является сыном предыдущей). |
Можно показать, что эффективный вариант леммы Кёнига неверен: существует бесконечное разрешимое поддерево полного двоичного дерева, не имеющее вычислимой бесконечной ветви. (Взяв пару перечислимых неотделимых множеств, можно построить дерево, в котором любая бесконечная ветвь поворачивает направо в точках первого множества и налево в точках второго. При этом поддерево можно сделать разрешимым, так как запрет поворота можно наложить на произвольно высоком уровне, когда выяснится принадлежность одному из множеств).
Источники информации
- Н. К. Верещагин, А. Шень. Лекции по математической логике и теории алгоритмов. Часть 3. Вычислимые функции. — М.: МЦНМО, 1999. с. 20, с. 68. ISBN 5-900916-36-7
- Wikipedia - Recursively inseparable sets
- Gasarch, William (1998), "A survey of recursive combinatorics", Handbook of recursive mathematics, Vol. 2, Stud. Logic Found. Math. 139, Amsterdam: North-Holland, pp. 1041–1176, MR 1673598
- Smullyan, Raymond M. (1958), "Undecidability and recursive inseparability", Zeitschrift für Mathematische Logik und Grundlagen der Mathematik 4: 143–147