Отношение рёберной двусвязности — различия между версиями
(→Реберная двусвязность) |
м (→Реберная двусвязность) |
||
Строка 2: | Строка 2: | ||
{{Определение | {{Определение | ||
|definition = | |definition = | ||
− | Две вершины <tex> | + | Две вершины <tex>u</tex> и <tex> v</tex> [[Основные определения теории графов|графа]] <tex>G</tex> называются '''реберно двусвязными''', если между этими вершинами существуют два реберно непересекающихся пути. |
}} | }} | ||
Строка 20: | Строка 20: | ||
''Доказательство:'' Пусть <tex>P_1,P_2 : u \rightsquigarrow v </tex> (реберно не пересекающиеся пути) и <tex>Q_1,Q_2 : v \rightsquigarrow w </tex> (реберно не пересекающиеся пути). | ''Доказательство:'' Пусть <tex>P_1,P_2 : u \rightsquigarrow v </tex> (реберно не пересекающиеся пути) и <tex>Q_1,Q_2 : v \rightsquigarrow w </tex> (реберно не пересекающиеся пути). | ||
− | Составим пути <tex>S_1 = P_1 | + | Составим пути <tex>S_1 = P_1 \circ Q_1 </tex> и <tex>S_2 = P_2 \circ Q_2 </tex>. Сделаем пути <tex>S_1, S_2 </tex> [[Теорема о существовании простого пути в случае существования пути|простыми]]. Получим два реберно не пересекающихся пути <tex>S_1, S_2 </tex>. Действительно, <tex>S_1 \land S_2 = \varnothing</tex>, так как <tex>P_1 \land P_2 = \varnothing </tex> (реберная двусвязность <tex>u</tex> и <tex>v</tex>), <tex>Q_1 \land Q_2 = \varnothing </tex> (реберная двусвязность <tex>w</tex> и <tex>v</tex>). |
<tex>P_1 \land Q_2 = </tex> {какой-то путь} или <tex>P_2 \land Q_1 = </tex> {какой-то путь} не влияют на реберную двусвязность. | <tex>P_1 \land Q_2 = </tex> {какой-то путь} или <tex>P_2 \land Q_1 = </tex> {какой-то путь} не влияют на реберную двусвязность. | ||
− | Если <tex>S_1 \land S_2 \neq \varnothing </tex>, тогда возьмем <tex>S_1 = P_1 \circ Q_2 </tex>, а <tex>S_2 = P_2 | + | Если <tex>S_1 \land S_2 \neq \varnothing </tex>, тогда возьмем <tex>S_1 = P_1 \circ Q_2 </tex>, а <tex>S_2 = P_2 \circ Q_1 </tex>, сделаем их простыми. |
Утверждение доказано. | Утверждение доказано. | ||
}} | }} |
Версия 00:13, 28 октября 2010
Реберная двусвязность
Определение: |
Две вершины графа называются реберно двусвязными, если между этими вершинами существуют два реберно непересекающихся пути. | и
Теорема: |
Отношение реберной двусвязности является отношением эквивалентности на вершинах. |
Доказательство: |
Пусть - отношение реберной двусвязности.Рефлексивность: (Очевидно)Коммутативность: (Очевидно)Транзитивность: иДоказательство: Пусть (реберно не пересекающиеся пути) и (реберно не пересекающиеся пути).Составим пути простыми. Получим два реберно не пересекающихся пути . Действительно, , так как (реберная двусвязность и ), (реберная двусвязность и ). {какой-то путь} или {какой-то путь} не влияют на реберную двусвязность. Если , тогда возьмем , а , сделаем их простыми. Утверждение доказано. и . Сделаем пути |
Компоненты реберной двусвязности
Определение: |
Компонентами реберной двусвязности графа, называют его подграфы, множества вершин которых - классы эквивалентности реберной двусвязности, а множества ребер - множества ребер из соответствующих классов эквивалентности. |