Участник:Yulya3102/Матан3сем — различия между версиями
Nechaev (обсуждение | вклад) (→Список теорем) |
(→Полиномиальная формула) |
||
(не показано 8 промежуточных версий 6 участников) | |||
Строка 1: | Строка 1: | ||
== Основные вопросы == | == Основные вопросы == | ||
− | |||
=== Признак Вейерштрасса === | === Признак Вейерштрасса === | ||
Строка 24: | Строка 23: | ||
из 1) и 2) <tex> \Rightarrow S(x) </tex> непрерывна в <tex> (\cdot) x_0 </tex> | из 1) и 2) <tex> \Rightarrow S(x) </tex> непрерывна в <tex> (\cdot) x_0 </tex> | ||
+ | |||
+ | Где вы вообще такое доказательство нашли? Тут фигня какая-та. Нормальное доказательство есть в Фихтенгольце. | ||
}} | }} | ||
Строка 286: | Строка 287: | ||
[Тогда <tex>f</tex> — дифф. при <tex> |z - z_0| < r </tex> и <tex> f'(z) = \sum n a_n (z - z_0)^{n - 1} </tex> ] | [Тогда <tex>f</tex> — дифф. при <tex> |z - z_0| < r </tex> и <tex> f'(z) = \sum n a_n (z - z_0)^{n - 1} </tex> ] | ||
|proof= | |proof= | ||
− | <tex>R = \frac{1}{\overline{lim}\sqrt[n]{|a_n|}}; R_A = \frac{1}{\overline{lim}\sqrt[n]{(n + 1)|a_{n + 1}|}} = R</tex> | + | <tex>R = \frac{1}{\overline{\lim}\sqrt[n]{|a_n|}}; R_A = \frac{1}{\overline{\lim}\sqrt[n]{(n + 1)|a_{n + 1}|}} = R</tex> |
<tex> \frac{f(z + h) - f(z)}{h} = \sum \frac{a_n (z + h - z_0)^n - a_n (z - z0)^n }{h} = \sum a_n \frac{(z + h - z_0) - (z - z_0)^n}{h} </tex> | <tex> \frac{f(z + h) - f(z)}{h} = \sum \frac{a_n (z + h - z_0)^n - a_n (z - z0)^n }{h} = \sum a_n \frac{(z + h - z_0) - (z - z_0)^n}{h} </tex> | ||
Строка 298: | Строка 299: | ||
<tex> \sum h|a_n|r^{n - 1} </tex> — сх. <tex>\Rightarrow</tex> по [[Участник:Yulya3102/Матан3сем#Признак Вейерштрасса|признаку Вейерштрасса]] р. сх. при <tex> |h| < r - |z - z_0| </tex> | <tex> \sum h|a_n|r^{n - 1} </tex> — сх. <tex>\Rightarrow</tex> по [[Участник:Yulya3102/Матан3сем#Признак Вейерштрасса|признаку Вейерштрасса]] р. сх. при <tex> |h| < r - |z - z_0| </tex> | ||
− | <tex> f(z) = lim_{h \rightarrow 0} \frac{f(z + h) - f(z)}{h} = \sum lim a_n \frac{(z + h - z_0)^n - (z - z_0)^n}{h} = \sum n(z - z_0)^{n - 1} a_n </tex> | + | <tex> f(z) = \lim_{h \rightarrow 0} \frac{f(z + h) - f(z)}{h} = \sum \lim a_n \frac{(z + h - z_0)^n - (z - z_0)^n}{h} = \sum n(z - z_0)^{n - 1} a_n </tex> |
}} | }} | ||
Строка 392: | Строка 393: | ||
Замечание: Для <tex> F : E \rightarrow \mathbb{R}^l </tex> — дифференцируемо в точке <tex> a </tex>; <tex>F'(a) = ({\partial f_i\over\partial x_j})_{i = 1 \ldots l; j = 1 \ldots m} </tex> | Замечание: Для <tex> F : E \rightarrow \mathbb{R}^l </tex> — дифференцируемо в точке <tex> a </tex>; <tex>F'(a) = ({\partial f_i\over\partial x_j})_{i = 1 \ldots l; j = 1 \ldots m} </tex> | ||
|proof= | |proof= | ||
− | <tex>f(a + h) = f(a) | + | <tex>f(a + h) = f(a) + f'(a) \cdot h + o(h)</tex> |
<tex> h := (0, \ldots, 0, t, 0, \ldots, 0) </tex> | <tex> h := (0, \ldots, 0, t, 0, \ldots, 0) </tex> | ||
Строка 489: | Строка 490: | ||
<tex> (\lambda f_i)'(a)h = (\lambda'(a)(h))f_i(a) + \lambda(a)(f'_i(a)h) </tex> — <tex>i</tex>-ая коорд. док. ф-лы; <tex> ]f_i \leftrightarrow f </tex> | <tex> (\lambda f_i)'(a)h = (\lambda'(a)(h))f_i(a) + \lambda(a)(f'_i(a)h) </tex> — <tex>i</tex>-ая коорд. док. ф-лы; <tex> ]f_i \leftrightarrow f </tex> | ||
− | <tex> \lambda(a + h)f(a + h) - \lambda(a)f(a) = (\lambda(a + h) - \lambda(a))f(a + h) + \lambda(a)f(a + | + | <tex> \lambda(a + h)f(a + h) - \lambda(a)f(a) = (\lambda(a + h) - \lambda(a))f(a + h) + \lambda(a)(f(a + h) - f(a)) = |
(\lambda'(a)h + o(h))f(a + h) + \lambda(a)(f'(a)h + o(h)) = </tex> | (\lambda'(a)h + o(h))f(a + h) + \lambda(a)(f'(a)h + o(h)) = </tex> | ||
Строка 606: | Строка 607: | ||
<tex> (a_1 + ... + a_m)^{r + 1} = (a_1 + ... + a_m) \cdot \sum \frac{r!}{k_1! ... k_m!} \cdot a_1^{k_{1}} ... a_m^{k_{m}} = </tex> | <tex> (a_1 + ... + a_m)^{r + 1} = (a_1 + ... + a_m) \cdot \sum \frac{r!}{k_1! ... k_m!} \cdot a_1^{k_{1}} ... a_m^{k_{m}} = </tex> | ||
− | <tex> = \sum \frac{r!}{k_1! ... k_m!} \cdot a_1^{k_{1}+1} ... a_m^{k_{m}} + \sum \frac{r!}{k_1! ... k_m!} \cdot a_1^{k_{1}} a_2^{k_2 + 1} ... a_m^{k_{m}} + </tex><tex> \sum \frac{r!}{k_1! ... k_m!} \cdot a_1^{k_{1}} ... a_{m-1}^{k_{m - 1}} a_m^{k_{m + 1 | + | <tex> = \sum \frac{r!}{k_1! ... k_m!} \cdot a_1^{k_{1}+1} ... a_m^{k_{m}} + \sum \frac{r!}{k_1! ... k_m!} \cdot a_1^{k_{1}} a_2^{k_2 + 1} ... a_m^{k_{m}} + </tex><tex> \sum \frac{r!}{k_1! ... k_m!} \cdot a_1^{k_{1}} ... a_{m-1}^{k_{m - 1}} a_m^{k_{m} + 1} = </tex> |
<tex> = \sum_{\beta : |\beta| = r + 1; \beta_1 \ge 1} \frac{r! \beta_1}{\beta_1!\beta_2!...\beta_m!} \cdot a_1^{\beta_1}...a_m^{\beta_m} + \sum_{\beta : |\beta| = r + 1; \beta_2 \ge 1} \frac{r! \beta_2}{\beta_1!\beta_2!...\beta_m!} \cdot a_1^{\beta_1}...a_m^{\beta_m} + </tex> <ещё <tex> m - k </tex> суммы> = <tex> \sum_{|b| = r + 1} \frac{r! (b_1 + ... + b_m)}{b_1! ... b_m!} \cdot a_1^{\beta_1}...a_m^{\beta_m} </tex>; | <tex> = \sum_{\beta : |\beta| = r + 1; \beta_1 \ge 1} \frac{r! \beta_1}{\beta_1!\beta_2!...\beta_m!} \cdot a_1^{\beta_1}...a_m^{\beta_m} + \sum_{\beta : |\beta| = r + 1; \beta_2 \ge 1} \frac{r! \beta_2}{\beta_1!\beta_2!...\beta_m!} \cdot a_1^{\beta_1}...a_m^{\beta_m} + </tex> <ещё <tex> m - k </tex> суммы> = <tex> \sum_{|b| = r + 1} \frac{r! (b_1 + ... + b_m)}{b_1! ... b_m!} \cdot a_1^{\beta_1}...a_m^{\beta_m} </tex>; | ||
Строка 1451: | Строка 1452: | ||
<tex> \sim x^{x + 1} e^{-x} \sqrt{\frac{2\pi}{x}} \cdot \frac{1}{\sqrt{1}} \cdot 1 </tex> | <tex> \sim x^{x + 1} e^{-x} \sqrt{\frac{2\pi}{x}} \cdot \frac{1}{\sqrt{1}} \cdot 1 </tex> | ||
}} | }} | ||
+ | <tex> \int_{\gamma} \sum V_i dx_i = \int_{\gamma_1} \sum V_i dx_i</tex> | ||
== Определения и факты == | == Определения и факты == | ||
− | + | [[Участник:Yulya3102/Матан3сем/Определения|Перемещено, а то из-за большого размера страница не грузится на некоторых телефонах]] | |
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | | | ||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− |
Текущая версия на 14:50, 29 января 2015
Содержание
[убрать]- 1 Основные вопросы
- 1.1 Признак Вейерштрасса
- 1.2 Теорема Стокса--Зайдля для рядов
- 1.3 Теорема об интегрировании функционального ряда
- 1.4 Теорема о дифференцировании функционального ряда
- 1.5 Теорема о почленном предельном переходе в суммах
- 1.6 Теорема о перестановке пределов
- 1.7 Признак Дирихле равномерной сходимости функционального ряда
- 1.8 Метод суммирования Абеля
- 1.9 Теорема о круге сходимости степенного ряда
- 1.10 Теорема о равномерной сходимости и непрерывности степенного ряда
- 1.11 Линейные и комплексно линейные отображения. Уравнения Коши--Римана
- 1.12 Теорема о почленном дифференцировании степенного ряда
- 1.13 Экспонента, синус, косинус. Свойства.
- 1.14 Единственность производной
- 1.15 Лемма о покоординатной дифференцируемости
- 1.16 Необходимое условие дифференцируемости.
- 1.17 Достаточное условие дифференцируемости
- 1.18 Лемма об оценке нормы линейного оператора
- 1.19 Дифференцирование композиции
- 1.20 Дифференцирование «произведений»
- 1.21 Теорема Лагранжа для векторнозначных функций
- 1.22 Экстремальное свойство градиента
- 1.23 Независимость частных производных от порядка дифференцирования
- 1.24 Полиномиальная формула
- 1.25 Лемма о дифференцировании «сдвига»
- 1.26 Многомерная формула Тейлора (с остатком в форме Лагранжа и Пеано)
- 1.27 Теорема о пространстве линейных отображений
- 1.28 Теорема Лагранжа для отображений
- 1.29 Теорема об обратимости линейного отображения, близкого к обратимому
- 1.30 Теорема о непрерывно дифференцируемых отображениях
- 1.31 Необходимое условие экстремума. Теорема Ролля
- 1.32 Лемма об оценке квадратичной формы и об эквивалентных нормах
- 1.33 Достаточное условие экстремума
- 1.34 Лемма о почти локальной инъективности
- 1.35 Теорема о сохранении области
- 1.36 Теорема о диффеоморфизме
- 1.37 Теорема о локальной обратимости
- 1.38 Теорема о неявном отображении
- 1.39 Теорема о задании гладкого многообразия системой уравнений
- 1.40 Необходимое условие относительного локального экстремума
- 1.41 Вычисление нормы линейного оператора с помощью собственных чисел
- 1.42 Простейшие свойства интеграла векторного поля по кусочно-гладкому пути
- 1.43 Обобщенная формула Ньютона--Лебница
- 1.44 Характеризация потенциальных векторных полей в терминах интегралов
- 1.45 Лемма о дифференцировании интеграла по параметру
- 1.46 Необходимое условие потенциальности гладкого поля. Лемма Пуанкаре
- 1.47 Лемма о гусенице
- 1.48 Лемма о равенстве интегралов по похожим путям
- 1.49 Лемма о похожести путей, близких к данному
- 1.50 Равенство интегралов по гомотопным путям
- 1.51 Потенциальность локально потенциального поля. Следствие о лемме Пуанкаре
- 1.52 Асимптотика интеграла $\int_0^{\pi/2}\cos^nx\,dx$, $n\no+\infty$
- 1.53 Лемма о локализации (в методе Лапласа)
- 1.54 Метод Лапласа вычисления асимптотики интегралов
- 1.55 Теорема Вейерштрасса о приближении функций многочленами
- 1.56 Формула Стирлинга для Гамма-функции
- 2 Определения и факты
Основные вопросы
Признак Вейерштрасса
Теорема: |
Рассмотрим ряд , где ( — метрическое пространство). Пусть есть ряд — сходящийся, такой, что .
Тогда равномерно сходится на . |
Доказательство: |
Теорема Стокса--Зайдля для рядов
Теорема: |
Пусть ряд , где ( — метрическое пространство), равномерно сходится на . Пусть есть точка , такая, что все непрерывны в . Тогда непрерывна в точке . |
Доказательство: |
1) — непрерывна в2) из 1) и 2) Где вы вообще такое доказательство нашли? Тут фигня какая-та. Нормальное доказательство есть в Фихтенгольце. непрерывна в |
Теорема об интегрировании функционального ряда
Теорема: |
Пусть ( — множество непрерывных функций), равномерно сходится на , .
Тогда 2) Правая часть имеет смысл — это следует из доказательства. 1) — непрерывно интеграл имеет смысл. |
Доказательство: |
Сделаем предельный переход по |
Теорема о дифференцировании функционального ряда
Теорема: |
Пусть ( — множество непрерывно дифференцируемых функций).
1) поточечно сходится на2) Тогда равномерно сходится при и . |
Доказательство: |
Следует из т. о предельном переходе под знаком производной (прошлый семестр).
|
Теорема о почленном предельном переходе в суммах
Теорема: |
Пусть , .
1) 2) равномерно сходится наТогда 1) 2) — сходится |
Доказательство: |
1) — имеет предел
Берём из р. сх-ти
При данном Выберем так близко к , чтобы— непр. равномерно в — р. сх. на Утв. 2 следует из т. 1. Стокса-Зайдля для рядов |
Теорема о перестановке пределов
(
)Теорема: |
Пусть , [или даже — предельная точка ]
1) сходится равномерно к при2) Тогда 1) 2) |
Доказательство: |
Тогда: Условие 1: р. сх. к сумме
Условие 2: (при проявить сообразительность)
по теореме о почл. пр. переходе в суммах: 1) — сх., т.е.2) |
Замечание: верна теорема
при условии 1:
— и этот предел равномерный
Признак Дирихле равномерной сходимости функционального ряда
Теорема: |
Пусть есть ряд ,
1) частичные суммы ряда равномерно ограничены, т.е.2) Тогда монотонна по и равномерно сходится к равномерно сходится на . |
Доказательство: |
Применяя преобразование Абеля
В силу равномерной ограниченности частичных сумм ряда при некотором
Тогда, используя монотонность (по ), имеем
Из этого неравенства в силу получаем, чтоПрименяя критерий Коши, получаем, что ряд сходится равномерно на . |
Метод суммирования Абеля
Теорема: |
Пусть сходится. Рассмотрим функцию . Тогда . |
Доказательство: |
по признаку Абеля равномерно сх-ся — |
Теорема о круге сходимости степенного ряда
Теорема: |
Пусть — произвольный степенной ряд — комплексная переменная или
Возможны три случая: 1) ряд сходится2) сходится только при3) присходится расходится — радиус сходимости |
Доказательство: |
Нужно доказать абсолютную сходимость
1) при всех ряд сходится абсолютно2) при , т.е. ряд сходитсяпри расходится (слагаемые )3) — конеченряд сходится абсолютно расходится (слагаемые ) |
Теорема о равномерной сходимости и непрерывности степенного ряда
Теорема: |
Пусть ряд — радиус сходимости. Тогда:
1) Для 2) В круге ряд равномерно сходится в круге сумма ряда — непрерывна. |
Доказательство: |
— сходится! т.к. — абс. сх.
(2) фиксируем В ; Возьмём ряд р. сх. и слагаемые непр. сумма непрерывна. |
Линейные и комплексно линейные отображения. Уравнения Коши--Римана
Лемма: |
Пусть — комплексно дифференцируема в точке . Тогда, если , отображение дифференцируемо в и выполнены соотношения:
(уравнения Коши-Римана) |
Доказательство: |
Википедия [1] |
Теорема о почленном дифференцировании степенного ряда
Теорема: |
Ряд
Ряд Тогда: 1) радиус сх-ти [Тогда . 2) при — дифф. при и ] |
Доказательство: |
Проверим р. сх. ;Тогда:
признаку Вейерштрасса р. сх. при — сх. по |
Экспонента, синус, косинус. Свойства.
1.1)
1.2)
1.3)
1.4)
Теорема: |
Доказательство: |
|
- Следствие: — ни при каких
2.1)
2.2)
2.3)
2.4)
2.5) Пусть
2.6)
2.7)
Единственность производной
Теорема: |
Производный оператор единственный. |
Доказательство: |
Покажем, что значение производного оператора определения. По линейности имеем: на каждом векторе определяется однозначно. По линейности оператора . Зафиксируем . Возьмём достаточно малое по модулю (достаточно взять , где ) и подставим вместо в равенство из. Перенеся в левую часть и разделив на , получим:, то есть . |
Лемма о покоординатной дифференцируемости
Лемма: |
Дифференцируемость отображения в точке равносильна одновременной дифференцируемости всех его координатных функций в точке . |
Доказательство: |
Пусть из определения производного оператора покоординатно: дифференцируемо в точке . Запишем равенство. Координатные функции Обратно, пусть линейного оператора являются линейными, а непрерывность и равенство нулю в нуле отображения равносильно такому же свойству его координатных функций . Поэтому для выполнено определение дифференцируемости. дифференцируемы в точке . Тогда для каждого существует линейная функция и функция , непрерывная и равная нулю в нуле, для которых выполняется равенство. Следовательно, для выполняется равенство из определения производного оператора, где — оператор с координатными функциями . |
Необходимое условие дифференцируемости.
Теорема: |
Пусть — дифференцируемо в точке
Тогда Замечание: Для и матрица Якоби — дифференцируемо в точке ; |
Доказательство: |
— это св-во дифф-ти в из |
Достаточное условие дифференцируемости
Теорема: |
Пусть , в шаре существуют все и все производные непрерывны в точке . Тогда дифференцируема в точке |
Доказательство: |
// — По теореме Лагранжа // // — средняя точка
где: по модулю; при |
Лемма об оценке нормы линейного оператора
Лемма: |
Пусть — линейный оператор. Тогда , где ( — элементы его матрицы) |
Доказательство: |
, т.е. если , то тривиально (КБШ)
|
Дифференцирование композиции
Теорема: |
— дифф. в — дифф. в ; Тогда: — дифф. в |
Доказательство: |
1. 2.
|
Дифференцирование «произведений»
Лемма: |
Пусть , , ; — дифференцируемые в . тогда:
1) 2) (здесь — скалярное произведение и ) |
Доказательство: |
1. Введём координатную ф-ю — -ая коорд. док. ф-лы;
— ограничена.
2. лин. дифф.Замечание: |
Теорема Лагранжа для векторнозначных функций
Теорема: |
— непр. на и дифф. на
Тогда: |
Доказательство: |
// Если ехать быстро и криво
при // — длина дуги; — длина хорды |
Экстремальное свойство градиента
Теорема: |
— направление Тогда Более того: указывает напр-е наискорейшего возр. ф-и, а самого быстрого убывания. напр. равенство достижимо для |
Доказательство: |
// // |
Независимость частных производных от порядка дифференцирования
Теорема: |
— опр. в окр. , дифф. в окр. Тогда эти две частные производные равны. и — непр. в |
Доказательство: |
— задано при фикс.
— средние точки
|
- Замечание 1:
Аналогично:
— опр. в окр. — непр. в
- Замечание 2:
Если
сущ. част. пр. -того порядка в окр. и все они непр. вДля
— индексыи
— которые получаются из набора перестановкаВерно:
Полиномиальная формула
Лемма: |
Если , — мультииндекс, - вектор, то |
Доказательство: |
Индукция по
<ещё суммы> = ; — это ограничение можно убрать, т.к. все слагаемые с имеют нулевой индекс |
- Замечание 1
- Замечание 2
Лемма о дифференцировании «сдвига»
Лемма: |
Пусть , открыто в , , так, что . Также . Пусть . Тогда верно . |
Доказательство: |
Доказательства нет, есть пример, из которого можно придумать доказательство по индукции, наверное. |
Многомерная формула Тейлора (с остатком в форме Лагранжа и Пеано)
Лагранж:
Теорема: |
Пусть , открыто в , . Тогда существует такое , что . |
Доказательство: |
Разложили по одномерной формуле Тейлора в точке 0, используя лемму о дифференцировании сдвига, — получили то, что нужно. |
Также можно обозначить точки через
и , тогда формула запишется в виде .Пеано:
Теорема: |
Пусть , открыто в , . Тогда . |
Теорема о пространстве линейных отображений
Теорема: |
|
Доказательство: |
1. очевидно // для2. очевидно, св-ва [2] . Википедия3. \\\\ |
Теорема Лагранжа для отображений
Теорема: |
Тогда: |
Доказательство: |
// |
Теорема об обратимости линейного отображения, близкого к обратимому
Теорема: |
Пусть ( — множество обратимых линейных операторов в ), . Тогда:
1) ;2) 3) ; . |
Доказательство: |
Лемма: пусть Тогда — обратим,Это правда, потому что , значит, — биекция(пусть )Неравенство получается из заменойСамо доказательство:
По условию теоремы множитель в последней части больше нуля, поэтому по лемме обратим, по этой же лемме выполнено 2).
|
Теорема о непрерывно дифференцируемых отображениях
Теорема: |
Пусть , где открыто, дифференцируемо на . Тогда эквивалентны утверждения:
— непрерывна. |
Доказательство: |
? непр. в
выберем ; при
— непрерывна. — нормированный базис
Точно также: |
Необходимое условие экстремума. Теорема Ролля
Необходимое условие экстремума:
Теорема: |
Пусть открыто — точка лок. экстремума. — дифф. на .
Тогда (т.е. ) |
Доказательство: |
Меняем | на , по теореме Ферма из первого семестра . Из этого следует, что все частные производные в точке a равны нулю, что нам и было нужно.
Теорема Ролля:
Теорема: |
Пусть компакт , дифференцируемо на , на (граница ), — непр. на .
Тогда существует . |
Доказательство: |
Если Если нет, то по постоянна на , то утверждение очевидно. теореме Вейерштрасса на компакте достигает наибольшего или наименьшего значения в какой-то точке, а по необходимому условию экстремума в этой точке градиент равен нулю. |
Лемма об оценке квадратичной формы и об эквивалентных нормах
Утверждение: |
1) Если квадратичная форма положительно определена, то существует такое , что для всех 2) Пусть — норма. Тогда . |
1) (Сфера теореме Вейерштрасса ) — компакт по
2) — по т. Вейерштрасса (т.к. — непр.)
|
Достаточное условие экстремума
Теорема: |
Пусть открыто в , дифф. на — стационарная точка (то есть ). — кв. форма.
Тогда справедливы следующие утверждения: 1) Если положительно определённая, то — точка минимума (локального).2) Если отрицательно определённая, то — точка максимума (локального).3) Если 4) Если не знакоопределённая, то — не точка экстремума. положительно/отрицально опр. вырожденное, то (?) может быть макс., мин. требуется исследование |
Доказательство: |
// Выберем так, чтобы при
Таким образом точка локального минимума— не знакоопределён.
— при эта сумма из '?' б.м по модулю при малых |
Лемма о почти локальной инъективности
Лемма: |
Пусть — диффеоморфизм, . Тогда |
Доказательство: |
1) — линейное.
2) // при |
Теорема о сохранении области
Теорема: |
Пусть , где открыто — диффеоморфизм в , . Тогда открыто.
1. Если 2. Непрерывность — лин. связное и — непр. — лин. связное — откр. [в ] |
Доказательство: |
— внутрення точка ?
при
Возьмем (S — сфера, т. е. граница шара)Утверждение: Т.е.:
— внутри В точке .На сфере : — имеет внутри шара пов точке минимума (у системы есть только тривиальное решение) |
Теорема о диффеоморфизме
Теорема: |
Пусть , — обратима и её производная невырождена, .
Тогда: 1) 2) |
Доказательство: |
1) — открытое Пусть Пусть — открытое, тогда — открытое.
Возьмём из леммы.Пусть
Можно считать, что близко к , так что
2) — любое. (без доказательства) |
Теорема о локальной обратимости
Теорема: |
Пусть , где открыто;
Тогда — диффеоморфизм ( или — сужение отображения на множество ). |
Доказательство: |
Нужно проверить лишь: — обратима[так как можно считать что на открыто и определено на открытом множестве и дифференцируемо по предыдущим теоремам]// Это какая-то хрень, к тому же она в конце не доказана. Надо проверить, что , тогда отображение будет биекцией.
|
- Замечание
— нужно для дифференцируемости.
— не дифференцируемо в нуле
Теорема о неявном отображении
Теорема: |
Пусть , где открыто, . Пусть известно, что невырождено ( ). Тогда:
1) существуют открытые , и существует единственное , чтоРаньше тут был забыт минус! 2) |
Доказательство: |
Пусть .
.
По теореме о локальной обратимости — такая, что — диффеоморфизм в данной окрестности.Тогда существует обратное отображение .Почти очевидно, что Берем производную — получаем 2): . |
Теорема о задании гладкого многообразия системой уравнений
Теорема: |
Пусть (гладкое многообразие), .
Эквивалентные утверждения: 1) — простое -мерное многообразие2) и существуют функции класса , для которых выполняются условия:2.1) 2.2) — линейно независимые |
Доказательство: |
— параметризация — матрица — реализуется на первых степенях
Очевидно: — невырожденно.
— диффеоморфизм на взаимно однозначное отображение на
— открыто в — реал. как — откр. в
|
Необходимое условие относительного локального экстремума
Теорема: |
Пусть , где открыто, . Пусть имеет в точке локальный относительный экстремум. Тогда , что
|
Доказательство: |
Пусть ранг реализуется на столбцах . Переобозначим .По теореме о неявном отображении: — гл. параметризация ; Точка — лок. экстремум . — необходимое усл. экстремума в матр. форме.
При таком |
Вычисление нормы линейного оператора с помощью собственных чисел
Теорема: |
Пусть . Тогда — собственное число . |
Доказательство: |
Простейшие свойства интеграла векторного поля по кусочно-гладкому пути
1) Линейность по векторному полю:
.— по линейному скалярному произведению
2) Аддитивность при дроблении пути:
.
3) Замена параметра: если
— гладкая, , ,Тогда
.
4) Пусть
— произведение путей:
то
.\\ заменить параметр
— противоположный путь (в обратную сторону)
5) Оценка интеграла:
Теорема: |
, где — длина пути.
|
Доказательство: |
Обобщенная формула Ньютона--Лебница
Теорема: |
Пусть потенциально, — потенциал , — кусочно гладкий.
Тогда . |
Доказательство: |
1) — доказано для гладкого пути\\ \\ 2) — гладкий |
Характеризация потенциальных векторных полей в терминах интегралов
Теорема: |
Если тогда эквиваленты следующие утверждение:
1) V потенциально в 2) Интеграл 3) не зависит от пути (в обл. ) |
Доказательство: |
— формула — очевидно — петля;
— очевидно
Фиксируем точку Возьмём как-нибудь путь из в— потенциал? Докажем, что (аналогично )Выберем
|
Лемма о дифференцировании интеграла по параметру
Лемма: |
Пусть — непрерывна, дифференцируема по при любых и непрерывна на промежутке. Пусть . Тогда дифференцируема и . |
Доказательство: |
зависит от — непрерывна на — равномерная непрерывность
— определение предела. |
Необходимое условие потенциальности гладкого поля. Лемма Пуанкаре
Теорема: |
Пусть — гладкое потенциальное векторное поле в . Тогда |
Доказательство: |
— потенциал, обе части (— непр., т.к. — гладкое) |
Лемма: |
Пусть — выпуклое, — векторное поле в , гладкое и . Тогда — потенциальное. |
Доказательство: |
фиксируем
|
Лемма о гусенице
Лемма: |
Пусть . Тогда существуют дробление и шары , что . |
Доказательство: |
— выберем шар
Пусть мы имеем — открытое покрытие и конечное подпокрытие Можно считать — которое лежит в , но не лежит в |
Лемма о равенстве интегралов по похожим путям
Лемма: |
Пусть — кусочно-гладкие, похожие, — локально-потенциальное векторное поле, . Тогда . |
Доказательство: |
Cуществуют дробление и шарыв существует потенциал векторного поля
Пусть — потенциал в , в выберем потенциалв выберем и т.д.
|
- Замечание
Лемма о похожести путей, близких к данному
Лемма: |
Пусть . Тогда [любые два пути, мало отличающиеся от данного — похожие] такое, что если пути — «близкие» к , то есть , то похожи. |
Доказательство: |
Cуществуют дробление и шары для— компакт в
— удовл. и — гусеница реал. похож. путей |
Равенство интегралов по гомотопным путям
Теорема: |
Пусть — локально-потенциальное векторное поле в , — связанно гомотопны. Тогда . Тоже верно для петельной гомотопии. |
Доказательство: |
— гомотопия. . Проверим, что — локальная постоянная при — постоянна) — равномерно непрерывна. верно |
Потенциальность локально потенциального поля. Следствие о лемме Пуанкаре
Теорема: |
Пусть — односвязная область, — локально потенциальное поле в . Тогда потенциально. |
Доказательство: |
По предыдущей теореме: — потенциально — гомотопия пост. пути |
Следствие: если
— односвязная, , то — потенциально.Асимптотика интеграла $\int_0^{\pi/2}\cos^nx\,dx$, $n\no+\infty$
Теорема: |
Доказательство: |
Доказательство в три шага, полностью выписывать много, поэтому здесь только идеи: 1) Доказывается заменой и каким-то подбором нового предела интегрирования, зависящего от n (конспект, стр.143)2) Доказываем, что x — точка максимума для 3) Делаем замену , вместе с этим заменяем по формуле Тейлора на и показываем, что это не мешает подставить замену в интеграл. , получаем интеграл из условия. |
Лемма о локализации (в методе Лапласа)
Лемма: |
Пусть непрерывна, на строго монотонно убывает, непрерывна. Тогда . |
Доказательство: |
// последняя экспонента с большим показателем |
Метод Лапласа вычисления асимптотики интегралов
Теорема: |
Пусть на , непрерывна, непрерывна, строго убывает, . Тогда . |
Доказательство: |
Утверждения: 1) (следствие из теоремы о локализации)2) (следствие из приема выше. Да, читается ужасно) Доказательство Выбираем окрестность точки и такое, что
Для , удовлетворяющих двум утверждениям выше, выполняется:
По утверждению 2 это меньше или равно . В квадратных скобках то, что нам нужно.Используя другие части неравенства, находим, что Вроде доказали. . |
Теорема Вейерштрасса о приближении функций многочленами
Теорема: |
Пусть непрерывна на . Тогда существует многочлен (последовательность многочленов?) , что . |
Доказательство: |
// Можно считать
Заметим, что: — достигается при
|
- Замечание
— непр. на — многочлен : на
Формула Стирлинга для Гамма-функции
Теорема: |
Доказательство: |
// // // |
Определения и факты
Перемещено, а то из-за большого размера страница не грузится на некоторых телефонах