Наивный алгоритм поиска подстроки в строке — различия между версиями

Материал из Викиконспекты
Перейти к: навигация, поиск
(Преимущества)
(Тикет 2-1)
Строка 1: Строка 1:
==Постановка задачи==
+
{{Задача
Дан текст <tex>t[1 .. n]</tex> и паттерн <tex>p[1 .. m]</tex> такие, что <tex>n \geqslant m</tex> и элементы этих строк  {{---}} символы из конечного алфавита <tex> \Sigma </tex>. Говорят, что паттерн <tex>p</tex> встречается в тексте <tex>t</tex> со сдвигом <tex>s</tex>, если <tex> 0 \leqslant s \leqslant n-m</tex> и <tex>t[s + 1 .. s + m] = p[1..m].</tex> Если строка <tex>p</tex> встречается в строке <tex>t</tex>, то <tex>p</tex> является подстрокой <tex>t</tex>. Требуется проверить, входит ли паттерн <tex>p</tex> в текст <tex>t</tex>.
+
|definition = Дан текст <tex>t[1 {} .. {} n]</tex> и паттерн <tex>p[1 .. m]</tex> такие, что <tex>n \geqslant m</tex> и элементы этих строк  {{---}} символы из конечного алфавита <tex> \Sigma </tex>. Требуется проверить, входит ли паттерн <tex>p</tex> в текст <tex>t</tex>.
 +
}}
 +
{{Определение
 +
|definition = Говорят, что паттерн <tex>p</tex> встречается в тексте <tex>t</tex> со сдвигом <tex>s</tex>, если <tex> 0 \leqslant s \leqslant n-m</tex> и <tex>t[s + 1 .. s + m] = p[1..m].</tex> Если строка <tex>p</tex> встречается в строке <tex>t</tex>, то <tex>p</tex> является подстрокой <tex>t</tex>.  
 +
}}
  
 
==Алгоритм==
 
==Алгоритм==
 
В наивном алгоритме поиск всех допустимых сдвигов производится с помощью цикла, в котором проверяется условие <tex>t[s + 1 .. s + m] = p[1..m] </tex> для каждого из <tex> n - m + 1 </tex>  возможных значений <tex>s</tex>.
 
В наивном алгоритме поиск всех допустимых сдвигов производится с помощью цикла, в котором проверяется условие <tex>t[s + 1 .. s + m] = p[1..m] </tex> для каждого из <tex> n - m + 1 </tex>  возможных значений <tex>s</tex>.
  
==Псевдокод==
+
===Псевдокод===
 
Приведем пример псевдокода, который находит все вхождения строки <tex>p</tex> в <tex>t</tex> и возвращает массив позиций, откуда начинаются вхождения.
 
Приведем пример псевдокода, который находит все вхождения строки <tex>p</tex> в <tex>t</tex> и возвращает массив позиций, откуда начинаются вхождения.
 
  '''vector<int>''' naiveStringMatcher('''string''' t, '''string''' p):
 
  '''vector<int>''' naiveStringMatcher('''string''' t, '''string''' p):
Строка 16: Строка 20:
 
     '''return''' ans
 
     '''return''' ans
  
==Время работы==
+
===Время работы===
 
Алгоритм работает за <tex>O(m \cdot (n - m))</tex>. В худшем случае <tex> m = </tex> <tex dpi ="150"> \frac{n}{2}, </tex> что дает <tex> O(n^2/4) = O(n^2) </tex>.
 
Алгоритм работает за <tex>O(m \cdot (n - m))</tex>. В худшем случае <tex> m = </tex> <tex dpi ="150"> \frac{n}{2}, </tex> что дает <tex> O(n^2/4) = O(n^2) </tex>.
 +
Однако если <tex>m</tex> достаточно мало, по сравнению с <tex>n</tex>, то тогда асимптотика получается близкой к <tex>O(n)</tex>, поэтому этот алгоритм достаточно широко применяется на практике.
  
 
==Преимущества==
 
==Преимущества==
*Требует <tex>O(1)</tex> памяти.
+
* Требует <tex>O(1)</tex> памяти.
*Простая и понятная реализация.
+
* Приемлемое время работы на практике (см. выше). Благодаря этом алгоритм применяется, например, в браузерах и текстовых редакторах (при использовании <tex> \mathrm{Ctrl} \texttt{+} \mathrm{F}</tex>), потому что обычно паттерн, который нужно найти очень короткий по сравнению с самим текстом. Также наивный алгоритм используется в стандартных библиотеках языков высокого уровня <tex>(\mathrm{C}\texttt{++},\ \mathrm{Java})</tex>, потому что он не требует дополнительной памяти.
*Если <tex>m</tex> достаточно мало, по сравнению с <tex>n</tex>, то тогда асимптотика получается близкой к <tex>O(n)</tex>. Поэтому этот алгоритм активно используется в браузерах (при использовании <tex> \mathrm{Ctrl} \texttt{+} \mathrm{F}</tex>), потому что обычно паттерн, который нужно найти очень короткий по сравнению с самим текстом. Также наивный алгоритм используется в стандартных библиотеках языков высокого уровня <tex>(\mathrm{C}\texttt{++},\ \mathrm{Java})</tex>, потому что он не требует дополнительной памяти.
+
* Простая и понятная реализация.
  
== Литература ==
+
== Источники информации ==
 
* ''Кормен Т., Лейзерсон Ч., Ривест Р.'' Алгоритмы: построение и анализ.[http://wmate.ru/ebooks/?dl=380&mirror=1] — 2-е изд. — М.: Издательский дом «Вильямс», 2007. — С. 1296.
 
* ''Кормен Т., Лейзерсон Ч., Ривест Р.'' Алгоритмы: построение и анализ.[http://wmate.ru/ebooks/?dl=380&mirror=1] — 2-е изд. — М.: Издательский дом «Вильямс», 2007. — С. 1296.
  
 
[[Категория:Алгоритмы и структуры данных]]
 
[[Категория:Алгоритмы и структуры данных]]
 
[[Категория:Поиск подстроки в строке]]
 
[[Категория:Поиск подстроки в строке]]

Версия 12:21, 18 марта 2015

Задача:
Дан текст [math]t[1 {} .. {} n][/math] и паттерн [math]p[1 .. m][/math] такие, что [math]n \geqslant m[/math] и элементы этих строк — символы из конечного алфавита [math] \Sigma [/math]. Требуется проверить, входит ли паттерн [math]p[/math] в текст [math]t[/math].


Определение:
Говорят, что паттерн [math]p[/math] встречается в тексте [math]t[/math] со сдвигом [math]s[/math], если [math] 0 \leqslant s \leqslant n-m[/math] и [math]t[s + 1 .. s + m] = p[1..m].[/math] Если строка [math]p[/math] встречается в строке [math]t[/math], то [math]p[/math] является подстрокой [math]t[/math].


Алгоритм

В наивном алгоритме поиск всех допустимых сдвигов производится с помощью цикла, в котором проверяется условие [math]t[s + 1 .. s + m] = p[1..m] [/math] для каждого из [math] n - m + 1 [/math] возможных значений [math]s[/math].

Псевдокод

Приведем пример псевдокода, который находит все вхождения строки [math]p[/math] в [math]t[/math] и возвращает массив позиций, откуда начинаются вхождения.

vector<int> naiveStringMatcher(string t, string p):
   int n = t.length
   int m = p.length
   vector<int> ans
   for i = 1 to n - m + 1
      if t[i..i + m - 1] == p[1..m]
           ans.push_back(i)
   return ans

Время работы

Алгоритм работает за [math]O(m \cdot (n - m))[/math]. В худшем случае [math] m = [/math] [math] \frac{n}{2}, [/math] что дает [math] O(n^2/4) = O(n^2) [/math]. Однако если [math]m[/math] достаточно мало, по сравнению с [math]n[/math], то тогда асимптотика получается близкой к [math]O(n)[/math], поэтому этот алгоритм достаточно широко применяется на практике.

Преимущества

  • Требует [math]O(1)[/math] памяти.
  • Приемлемое время работы на практике (см. выше). Благодаря этом алгоритм применяется, например, в браузерах и текстовых редакторах (при использовании [math] \mathrm{Ctrl} \texttt{+} \mathrm{F}[/math]), потому что обычно паттерн, который нужно найти очень короткий по сравнению с самим текстом. Также наивный алгоритм используется в стандартных библиотеках языков высокого уровня [math](\mathrm{C}\texttt{++},\ \mathrm{Java})[/math], потому что он не требует дополнительной памяти.
  • Простая и понятная реализация.

Источники информации

  • Кормен Т., Лейзерсон Ч., Ривест Р. Алгоритмы: построение и анализ.[1] — 2-е изд. — М.: Издательский дом «Вильямс», 2007. — С. 1296.