Поиск k-ой порядковой статистики в двух массивах — различия между версиями
(→Совсем не наивное решение) |
(→Варианты решения) |
||
Строка 13: | Строка 13: | ||
Рассмотрим следующую ситуацию: пусть у нас есть элемент <tex>a[i]</tex> из массива <tex>A</tex> и элемент <tex>b[j]</tex> из массива <tex>B</tex> и они связаны неравенством <tex>b[j - 1] < a[i] < b[j]</tex>. Тогда <tex>a[i]</tex> есть <tex>(j + i + 1)</tex>-ый порядковый элемент после слияния массивов. Это объясняется тем, что до <tex>a[i]</tex>-ого элемента идут <tex>(j - 1)</tex> элемент из массива <tex>B</tex>, <tex>i</tex> элементов из массива <tex>A</tex> (включая сам элемент <tex>a[i]</tex>) и так как индексация массивов начинается с нуля, то необходимо прибавить еще <tex>2</tex>. В итоге получаем <tex>(j - 1) + i + 2 = j + i + 1</tex>. | Рассмотрим следующую ситуацию: пусть у нас есть элемент <tex>a[i]</tex> из массива <tex>A</tex> и элемент <tex>b[j]</tex> из массива <tex>B</tex> и они связаны неравенством <tex>b[j - 1] < a[i] < b[j]</tex>. Тогда <tex>a[i]</tex> есть <tex>(j + i + 1)</tex>-ый порядковый элемент после слияния массивов. Это объясняется тем, что до <tex>a[i]</tex>-ого элемента идут <tex>(j - 1)</tex> элемент из массива <tex>B</tex>, <tex>i</tex> элементов из массива <tex>A</tex> (включая сам элемент <tex>a[i]</tex>) и так как индексация массивов начинается с нуля, то необходимо прибавить еще <tex>2</tex>. В итоге получаем <tex>(j - 1) + i + 2 = j + i + 1</tex>. | ||
+ | |||
+ | Принимая это во внимание, выберем <tex>i</tex> и <tex>j</tex> таким образом, чтобы <tex>j + i + 1 = k</tex>. |
Версия 20:54, 14 апреля 2015
Содержание
Постановка задачи
Пусть даны два отсортированных массива
и размерами и соответственно. Требуется найти -ый порядковый элемент после их слияния. Будем считать, что все элементы в массивах различны и нумеруются с нуля.Варианты решения
Наивное решение
Сольем два массива и просто возьмем элемент с индексом
. Сливание будет выполнено за .Чуть менее наивное решение
Будем использовать два указателя, с помощью которых сможем обойти массивы не сливая их. Поставим указатели на начало каждого из массивов. Будем увеличивать на единицу тот из них, который указывает на меньший элемент. После
-ого добавления сравним элементы, на которых стоят указатели. Меньший из них и будет ответом. Таким образом, мы получим -ый элемент за шагов.Совсем не наивное решение
Оба решения, приведенные выше, работают за линейное время, то есть приемлемы только при небольших значениях
. Следующее решение работает за .Чтобы получить логарифмическую сложность, будем использовать бинарный поиск, который вдвое сокращает область поиска с каждой итерацией. То есть для достижения нужной сложности мы должны на каждой итерации вдвое сокращать круг поиска в каждом из массивов.
Рассмотрим следующую ситуацию: пусть у нас есть элемент
из массива и элемент из массива и они связаны неравенством . Тогда есть -ый порядковый элемент после слияния массивов. Это объясняется тем, что до -ого элемента идут элемент из массива , элементов из массива (включая сам элемент ) и так как индексация массивов начинается с нуля, то необходимо прибавить еще . В итоге получаем .Принимая это во внимание, выберем
и таким образом, чтобы .