Поиск k-ой порядковой статистики в двух массивах — различия между версиями
Анна (обсуждение | вклад) (→Совсем не наивное решение) |
Анна (обсуждение | вклад) (→Совсем не наивное решение) |
||
Строка 10: | Строка 10: | ||
В первом массиве выберем серединный элемент <tex>(i = n / 2)</tex> и бинпоиском найдем во втором массиве позицию <tex>j</tex>, на котором стоит наибольший элемент, меньший <tex>a[i]</tex>. Если <tex>i + j = k - 2</tex>, то мы нашли <tex>k</tex>-ую порядковую статистику {{---}} это элемент <tex>a[i]</tex>. Иначе, если <tex>i + j > k - 2</tex>, то далее тем же способом ищем в массиве <tex>A</tex> в диапазоне индексов <tex>[0, i - 1]</tex>, а если <tex>i + j < k - 2</tex>, то в диапазоне индексов <tex>[i + 1, n - 1]</tex>. Решая задачу таким способом, мы получим асимптотику <tex>O(\log(n) \cdot \log(m))</tex>. | В первом массиве выберем серединный элемент <tex>(i = n / 2)</tex> и бинпоиском найдем во втором массиве позицию <tex>j</tex>, на котором стоит наибольший элемент, меньший <tex>a[i]</tex>. Если <tex>i + j = k - 2</tex>, то мы нашли <tex>k</tex>-ую порядковую статистику {{---}} это элемент <tex>a[i]</tex>. Иначе, если <tex>i + j > k - 2</tex>, то далее тем же способом ищем в массиве <tex>A</tex> в диапазоне индексов <tex>[0, i - 1]</tex>, а если <tex>i + j < k - 2</tex>, то в диапазоне индексов <tex>[i + 1, n - 1]</tex>. Решая задачу таким способом, мы получим асимптотику <tex>O(\log(n) \cdot \log(m))</tex>. | ||
=== Совсем не наивное решение === | === Совсем не наивное решение === | ||
− | Оба решения, приведенные выше, работают за линейное время, то есть приемлемы только при небольших значениях <tex>k</tex>. Следующее решение работает за <tex>O(\log( | + | Оба решения, приведенные выше, работают за линейное время, то есть приемлемы только при небольших значениях <tex>k</tex>. Следующее решение работает за <tex>O(\log(\min(n, m)))</tex>. |
Чтобы получить логарифмическую сложность, будем использовать [[Целочисленный двоичный поиск|бинарный поиск]], который сокращает область поиска с каждой итерацией. То есть для достижения нужной сложности мы должны на каждой итерации сокращать круг поиска в каждом из массивов. | Чтобы получить логарифмическую сложность, будем использовать [[Целочисленный двоичный поиск|бинарный поиск]], который сокращает область поиска с каждой итерацией. То есть для достижения нужной сложности мы должны на каждой итерации сокращать круг поиска в каждом из массивов. | ||
Строка 26: | Строка 26: | ||
Стоит отметить, что еще нам не нужно рассматривать элементы, стоящие и в том, и в другом массивах на позициях от <tex>k</tex>-ой до конца (если такие есть), так как они тоже никогда не будут ответом. Поэтому первый раз запускаем нашу функцию от параметров <tex>\mathtt{findKthOrderStatistic}(A, \min(n, k), B, \min(m, k), k)</tex>. | Стоит отметить, что еще нам не нужно рассматривать элементы, стоящие и в том, и в другом массивах на позициях от <tex>k</tex>-ой до конца (если такие есть), так как они тоже никогда не будут ответом. Поэтому первый раз запускаем нашу функцию от параметров <tex>\mathtt{findKthOrderStatistic}(A, \min(n, k), B, \min(m, k), k)</tex>. | ||
− | + | ||
'''int''' findKthOrderStatistic('''int*''' A, '''int''' n, '''int*''' B, '''int''' m, '''int''' k): | '''int''' findKthOrderStatistic('''int*''' A, '''int''' n, '''int*''' B, '''int''' m, '''int''' k): | ||
+ | '''if''' (n == 1): | ||
+ | '''if''' (A[0] > B[k - 1]): | ||
+ | '''return''' B[k - 1] | ||
+ | '''else''' | ||
+ | '''return''' A[0] | ||
+ | '''if''' (m == 1): | ||
+ | '''if''' (B[0] > A[k - 1]): | ||
+ | '''return''' A[k - 1] | ||
+ | '''else''' | ||
+ | '''return''' B[0] | ||
'''int''' i = n / 2 | '''int''' i = n / 2 | ||
'''int''' j = (k - 1) - i <font color=green>// j > 0, так как i <= (k / 2) </font> | '''int''' j = (k - 1) - i <font color=green>// j > 0, так как i <= (k / 2) </font> | ||
Строка 35: | Строка 45: | ||
'''int''' Ai_left = ((i == 0) ? INT_MIN : A[i-1]) | '''int''' Ai_left = ((i == 0) ? INT_MIN : A[i-1]) | ||
'''int''' Bj_left = ((j == 0) ? INT_MIN : B[j-1]) | '''int''' Bj_left = ((j == 0) ? INT_MIN : B[j-1]) | ||
− | '''if''' (Bj_left < | + | '''if''' (Bj_left < A[i] and A[i] < B[j]): |
− | '''return''' | + | '''return''' A[i] |
− | '''else if''' (Ai_left < | + | '''else if''' (Ai_left < B[j] and B[j] < A[i]): |
− | '''return''' | + | '''return''' B[j] |
− | '''if''' ( | + | '''if''' (A[i] < B[j]): |
'''return''' findKthOrderStatistic(A + i + 1, n - i - 1, B, j, k - i - 1) | '''return''' findKthOrderStatistic(A + i + 1, n - i - 1, B, j, k - i - 1) | ||
'''else''' | '''else''' | ||
'''return''' findKthOrderStatistic(A, i, B + j + 1, m - j - 1, k - j - 1) | '''return''' findKthOrderStatistic(A, i, B + j + 1, m - j - 1, k - j - 1) | ||
− | + | Чтобы алгоритм работал за <tex>O(\log(\min(n, m)))</tex>, будем передавать первым массивом в функцию тот, длина которого меньше. Тогда первый массив на каждой итерации уменьшается в два раза, как только его размер становится равным единице, за несколько сравнений мы находим ответ. Таким образом мы получаем заявленную асимптотику. | |
==См. также== | ==См. также== |
Версия 18:06, 18 апреля 2015
Задача: |
Пусть даны два отсортированных массива найти после их слияния. Будем считать, что все элементы в массивах различны и нумеруются с нуля. -ый порядковый элемент | и размерами и соответственно. Требуется
Содержание
Варианты решения
Наивное решение
Сольем два массива и просто возьмем элемент с индексом
. Сливание будет выполнено за c использованием дополнительной памяти, что является существенным недостатком.Чуть менее наивное решение
Будем использовать два указателя, с помощью которых сможем обойти массивы не сливая их. Поставим указатели на начало каждого из массивов. Будем увеличивать на единицу тот из них, который указывает на меньший элемент. После
-ого добавления сравним элементы, на которых стоят указатели. Меньший из них и будет ответом. Таким образом, мы получим -ый элемент за шагов.Еще одно решение
В первом массиве выберем серединный элемент
и бинпоиском найдем во втором массиве позицию , на котором стоит наибольший элемент, меньший . Если , то мы нашли -ую порядковую статистику — это элемент . Иначе, если , то далее тем же способом ищем в массиве в диапазоне индексов , а если , то в диапазоне индексов . Решая задачу таким способом, мы получим асимптотику .Совсем не наивное решение
Оба решения, приведенные выше, работают за линейное время, то есть приемлемы только при небольших значениях
. Следующее решение работает за .Чтобы получить логарифмическую сложность, будем использовать бинарный поиск, который сокращает область поиска с каждой итерацией. То есть для достижения нужной сложности мы должны на каждой итерации сокращать круг поиска в каждом из массивов.
Рассмотрим следующую ситуацию: пусть у нас есть элемент
из массива и элемент из массива и они связаны неравенством . Тогда есть -ый порядковый элемент после слияния массивов. Это объясняется тем, что до -ого элемента идут элемент из массива , элементов из массива (включая сам элемент ). В итоге получаем . Принимая это во внимание, будем выбирать и таким образом, чтобы .Подведем промежуточный итог:
- Инвариант
- Если , то и есть -ая порядковая статистика
- Если , то и есть -ая порядковая статистика
Итак, если одно из двух последних условий выполняется, то мы нашли нужный элемент. Иначе нам нужно сократить область поиска, как задумывалось в начале.
Будем использовать
и как опорные точки для разделения массивов. Заметим, что если , то (иначе второе условие бы выполнялось). В таком случае на месте -го элемента может стоять максимум -ый порядковый элемент после слияния массивов (так произойдет в случае, когда ), а значит элемент с номером и все до него в массиве никогда не будут -ой порядковой статистикой. Аналогично элемент с индексом и все элементы, стоящие после него, в массиве никогда не будут ответом, так как на позиции будет стоять -ой порядковый элемент после слияния, порядковые номера остальных же будут еще больше. Таким образом, далее мы можем продолжать поиск в массиве только в диапазоне индексов , а в массиве — . По аналогии, если , то (иначе выполнялось бы третье условие). Аналогичными рассуждениями приходим к тому, что в таком случае дальнейший поиск нужно осуществлять в массиве в диапазоне , в массиве — .Стоит отметить, что еще нам не нужно рассматривать элементы, стоящие и в том, и в другом массивах на позициях от
-ой до конца (если такие есть), так как они тоже никогда не будут ответом. Поэтому первый раз запускаем нашу функцию от параметров .int findKthOrderStatistic(int* A, int n, int* B, int m, int k): if (n == 1): if (A[0] > B[k - 1]): return B[k - 1] else return A[0] if (m == 1): if (B[0] > A[k - 1]): return A[k - 1] else return B[0] int i = n / 2 int j = (k - 1) - i // j > 0, так как i <= (k / 2) if (j >= m): return findKthOrderStatistic(A + i + 1, n - i - 1, B, m, k - i - 1) // чтобы сохранить инвариант, сделаем A[-1] = -INF и B[-1] = -INF int Ai_left = ((i == 0) ? INT_MIN : A[i-1]) int Bj_left = ((j == 0) ? INT_MIN : B[j-1]) if (Bj_left < A[i] and A[i] < B[j]): return A[i] else if (Ai_left < B[j] and B[j] < A[i]): return B[j] if (A[i] < B[j]): return findKthOrderStatistic(A + i + 1, n - i - 1, B, j, k - i - 1) else return findKthOrderStatistic(A, i, B + j + 1, m - j - 1, k - j - 1)
Чтобы алгоритм работал за
, будем передавать первым массивом в функцию тот, длина которого меньше. Тогда первый массив на каждой итерации уменьшается в два раза, как только его размер становится равным единице, за несколько сравнений мы находим ответ. Таким образом мы получаем заявленную асимптотику.