Функциональное программирование — различия между версиями
Alex z (обсуждение | вклад) м (→Кр3)  | 
				Alex z (обсуждение | вклад)  м (→Кр3)  | 
				||
| Строка 225: | Строка 225: | ||
=Кр3=  | =Кр3=  | ||
| − | + | ===ITMOPrelude===  | |
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | ==ITMOPrelude==  | ||
#gromakovsky  | #gromakovsky  | ||
#* [https://github.com/gromakovsky/haskell-course-ru/blob/master/ITMOPrelude/Primitive.hs Primitive.hs]  | #* [https://github.com/gromakovsky/haskell-course-ru/blob/master/ITMOPrelude/Primitive.hs Primitive.hs]  | ||
| Строка 249: | Строка 235: | ||
#* [https://github.com/itanf/ITMO-Training-FunctionalProgramming/blob/master/ITMOPrelude/Primitive.hs Primitive.hs]  | #* [https://github.com/itanf/ITMO-Training-FunctionalProgramming/blob/master/ITMOPrelude/Primitive.hs Primitive.hs]  | ||
#* [https://github.com/itanf/ITMO-Training-FunctionalProgramming/blob/master/ITMOPrelude/List.hs List.hs]  | #* [https://github.com/itanf/ITMO-Training-FunctionalProgramming/blob/master/ITMOPrelude/List.hs List.hs]  | ||
| + | ==Натуральные числа==  | ||
| + | ==Целые числа==  | ||
| + | ==Рациональные числа==  | ||
| + | ==GCD==  | ||
| + | ==Метод Ньютона==  | ||
| + | ==subsequences==  | ||
| + | ==permutations==  | ||
| + | * Дают тип какого-нибудь foldr и просят написать какой-нибудь foldr.  | ||
| + | * Написать определения каких-нибудь тайпклассов.  | ||
| + | * Написать какие-нибудь инстансы.  | ||
| + | * Доказать эквивалетность каких-нибудь двух определений монады.  | ||
| + | * CPS-преобразовать какие-нибудь типы.  | ||
| + | * Написать монадные инстансы для CPS-преобразованных типов.  | ||
=Кр4=  | =Кр4=  | ||
Версия 13:57, 26 апреля 2015
Содержание
- 1 Кр1
 - 2 Кр2
- 2.1 Фотки
 - 2.2 N1. Порядок редуцирования
 - 2.3 E0. Определить примитивные конструкции
 - 2.4 E1. Превратить let-биндинги в один большой лямбда-терм.
 - 2.5 E2. let-биндинги, но с возможной взаимной рекурсией
 - 2.6 N2. Раскрыть, как в E1 и нормализовать
 - 2.7 S1. Расписать систему уравнений типов
 - 2.8 TP1. Убрать сокращения и расставить скобки
 - 2.9 TF1. Составить терм по типу
 - 2.10 A1. Закодировать типы по Чёрчу (без взаимной рекурсии)
 - 2.11 A2. Закодировать типы по Чёрчу (с взаимной рекурсией)
 - 2.12 H1. Написать Haskell-код какой-нибудь структуру данных
 
 - 3 Кр3
 - 4 Кр4
 
Кр1
Убрать все сокращения и расставить все скобки
(λ a b . (λ c d e . e) a) (x y) y (λ f . x) y
Решение
Скобки ставятся по следующим правилам:
- тело абстракции заключается в скобки: λ x . M λ x . (M)
 - аппликация левоассоциативна: a b c d ((a b) c) d
 - сокращения раскрываются во вложенные лямбды (сразу с расставлением скобок): λ a b c . M λ a . (λ b . (λ c . (M)))
 
Важно: тело абстракции забирает всё до конца той скобки, в которую заключена.
Итого: ((((λ a . (λ b . ((λ c . (λ d . (λ e . (e)))) a))) (x y)) y) (λ f . (x))) y
Привести в нормальную форму
λ a b . a (λ c . b c) a (λ d . d) a
λ a . (λ b . y) (λ c . y (y (λ d . a a a)) (x x) a)
Решение
В нормальной форме нет редукций. Если нормальная форма существует, то её можно достичь при помощи редукций нормальным порядком, а аппликативным можно и не достичь.
- Уже в нормальное форме, как ни странно
 - λ a . y
 
Нормальный порядок редукции
(λ a . y (y (y (λ b . a))) y) (x (x (x (λ c d . d) y)) x)
Здесь про стратегии редуцирования с примерами и определениями.
Нормальный порядок редуцирования — сначала раскрывается самый левый самый внешний редекс. Пример не очень удачный, так в нём всего одна редукция, после которой получится: y (y (y (λ b . (x (x (x (λ c d . d) y)) x)))) y
Более показательные и содержательные примеры (во всех случаях одна редукция будет произведена):
- (λ a . a) ((λ x . x) y) (λ x . x) y
 - x (λ a . ((λ x . x) y) ((λ z . z) y)) x (λ a . y ((λ z . z) y))
 
Аппликативный порядок редукции
Здесь ещё про стратегии редуцирования, но немного другим языком (может быть, кому-то более понятным).
Аппликативный порядок редуцирования — первым делом редуцируем самый правый самый глубокий терм. То есть сначала упрощаем "аргументы" аппликации.
Те же примеры (во всех случаях одна редукция будет произведена):
- (λ a . a) ((λ x . x) y) (λ a . a) y
 - x (λ a . ((λ x . x) y) ((λ z . z) y)) x (λ a . ((λ x . x) y) y)
 
Ещё один для разнообразия: ((λ x . y) (λ z . t)) ((λ a b c . a b c ((λ s . t) y) (λ t . x) u) (λ x . x)) ((λ x . x x) z) ((λ x . y) (λ z . t)) ((λ a b c . a b c ((λ s . t) y) (λ t . x) u) (λ x . x)) (z z)
Выписать систему уравнений типизации
(λ a . a a) (λ b c . c)
Решение
Сначала надо дать типы всем термам и подтермам, раздавая каждый раз новые буквы новым переменным и термам. А потом связать эти буквы по следующим правилам:
- если у нас абстракция (λ x . M) :: T0, x :: T1, M :: T2, то добавляем в систему T0 = T1 -> T2,
 - если имеем аппликацию (M N) :: T0, M :: T1, N :: T2, то добавляем T1 = T2 -> T0
 - если у нас переменная в теле абстракции встречается несколько раз и мы раздаём каждый раз ей новые буквы, то надо будет потом приравнять типы в аргументе абстракции и внутри её тела.
 
Итого:
(λ a . a a) (λ b c . c) :: A
(λ a . a a) :: B, (λ b c . c) :: C
a :: D, (a a) :: E
первая и вторая буквы "a" в E — a :: F, a :: G
Можем сразу расписать часть системы уравнений:
B = C -> A
B = D -> E
F = G -> E
D = F
D = G
Теперь расписываем терм с типом C (раскрыв сокращения для начала): (λ b . (λ c . c)) :: С
b :: H, (λ c . c) :: I
c :: J, c :: K
И добавляем уравнения:
C = H -> I
I = J -> K
J = K
Кодирование по Чёрчу
Выписать кайнды конструкторов типов, выписать типы конструкторов, закодировать по Чёрчу:
data Policeman a = Doctor a | Mice
data Tree a b c = Frog c | Pip (Tree a b c)
Этого задания не было в первой кр, поэтому оно будет расписано во второй. Вместо него была система уравнений типов чуть более адовая, чем в прошлом примере.
Кр2
Фотки
Разбор будет по фоткам 3, 4, 5 (остальные задания аналогичны):
N1. Порядок редуцирования
См. прошлую кр
E0. Определить примитивные конструкции
pair = \ x y p . p x y fst = \ r . r (\ x y . x) snd = \ r . r (\ x y . y) fix = \ f . (\ x . f (x x)) (\ x . f (x x))
Легко проверить, что fst (pair a b) = a, подставив и сделав редукции.
E1. Превратить let-биндинги в один большой лямбда-терм.
Конструкция
let x = z in y
превращается в
(\x . y) z
А пример просто превратится в
(\foo. [main]) [foo]
где [foo] — тело foo, [main] — тело main.
E2. let-биндинги, но с возможной взаимной рекурсией
):
N2. Раскрыть, как в E1 и нормализовать
В общем, в задании всё сказано. Надо превратить в один большой терм как в E1, а затем нормализовать, как в задании из первой кр.
S1. Расписать систему уравнений типов
Как в первой кр.
TP1. Убрать сокращения и расставить скобки
Именно это и требуется сделать. Разве что там вместо тела абстракции расписан её тип. А (->) в типе в отличие от аппликации правоассоциативна, то есть в
a -> b -> c
скобки ставятся следующим образом:
a -> (b -> c)
Итого:
- дано: (\ a b . b -> b -> a) x
 - получается: (\ a . (\ b . b -> (b -> a))) x // вроде бы тут как раз весь тип внутри не надо заключать в скобки
 
TF1. Составить терм по типу
Тут надо пользоваться логикой. Вроде бы во всех примерах можно решить методом пристального взгляда. Мотивация: чтобы решение системы уравнений типов совпадало с полученным типом. Но в некоторых случаях довольно трудно (или даже невозможно) придумать терм по типу, например здесь не придумывается:
(a -> b) -> b -> a
Решение
Дано: forall a b c . (b -> c -> a) -> (c -> b) -> c -> a
Ответ: \f g c . f (g c) c
A1. Закодировать типы по Чёрчу (без взаимной рекурсии)
data Doctor a = Minute a | Maybe a a a data Hour a b = Hour (Hour b b) (Doctor a) (Doctor b) | Roll b (Doctor a)
Решение
У каждого типа есть конструктов, а у каждого конструктора есть аргументов.
Фиксируем тип с конструкторами. Каждый конструктор этого типа превращается в абстракцию, в которой сначала идут переменных — аргументы конструктора, а потом переменных, отвечающих конструкторам. В теле просто выбирается нужный конструктор и применяется ко всем аргументам.
caseTypeName тоже является абстракцией, которая принимает сначала одну переменную, которая "выбирает" нужный конструктор, затем набор переменных в количестве числа конструкторов. В теле просто применяется первая переменная ко всем остальным.
-- сначала Doctor Minute = \ a . \ x y . x a Maybe = \ a b c . \ x y . y a b c caseDoctor = \ p . \ x y . p x y -- теперь Hour Hour = \ a b c . \ x y . x a b c Roll = \ a b . \ x y . y a b caseHour = \ p . \ x y . p x y
Интересное наблюдение: переменная p в case является как раз нужным конструктором, в котором уже подставлены все аргументы этого конструктора.
A2. Закодировать типы по Чёрчу (с взаимной рекурсией)
):
H1. Написать Haskell-код какой-нибудь структуру данных
-  АВЛ-дерево: ссылка на pastie
- почему я не знал Haskell, когда это дерево было в лабе по дискретке на первом курсе? ;( просто списывается с конспекта один в один...
 
 -   Квадродерево: ссылка на pastie
- не совсем то, что требует Ян, но я пока не распарсил то, что он требует; возможно, более правильная версия появится позже
 
 
Кр3
ITMOPrelude
- gromakovsky
 - yakupov
 - itanf
 
Натуральные числа
Целые числа
Рациональные числа
GCD
Метод Ньютона
subsequences
permutations
- Дают тип какого-нибудь foldr и просят написать какой-нибудь foldr.
 - Написать определения каких-нибудь тайпклассов.
 - Написать какие-нибудь инстансы.
 - Доказать эквивалетность каких-нибудь двух определений монады.
 - CPS-преобразовать какие-нибудь типы.
 - Написать монадные инстансы для CPS-преобразованных типов.