NP-полнота задачи о выполнимости булевой формулы в форме КНФ — различия между версиями
(→Доказательство принадлежности классу NPH) |
(→Доказательство принадлежности классу NPH) |
||
Строка 17: | Строка 17: | ||
==== Доказательство принадлежности классу NPH ==== | ==== Доказательство принадлежности классу NPH ==== | ||
Выполним сведение по Карпу задачи <tex>SAT</tex> к задаче <tex>CNFSAT</tex>. Для этого необходимо построить функцию <tex>f</tex>, вычислимую за полиномиальное время от длины входа, которая выполняла бы преобразование <tex>\phi \to \omega</tex>, где <tex>\omega</tex> в КНФ. Заметим, что в общем случае время построения эквивалентной формулы в форме КНФ может оказаться больше полиномиального. В частности, длина формулы может вырасти экспоненциально, и тогда время порождения тоже экспоненциально вырастет. Однако нам достаточно предъявить формулу <tex>\omega</tex>, которая будет выполнима тогда и только тогда, когда выполнима исходная формула <tex>\phi</tex>. При этом формулы могут оказаться не эквивалентными, ввиду, например, добавления новых переменных. | Выполним сведение по Карпу задачи <tex>SAT</tex> к задаче <tex>CNFSAT</tex>. Для этого необходимо построить функцию <tex>f</tex>, вычислимую за полиномиальное время от длины входа, которая выполняла бы преобразование <tex>\phi \to \omega</tex>, где <tex>\omega</tex> в КНФ. Заметим, что в общем случае время построения эквивалентной формулы в форме КНФ может оказаться больше полиномиального. В частности, длина формулы может вырасти экспоненциально, и тогда время порождения тоже экспоненциально вырастет. Однако нам достаточно предъявить формулу <tex>\omega</tex>, которая будет выполнима тогда и только тогда, когда выполнима исходная формула <tex>\phi</tex>. При этом формулы могут оказаться не эквивалентными, ввиду, например, добавления новых переменных. | ||
+ | |||
+ | Итак, опишем действия функции <tex>f</tex>. | ||
+ | На первом этапе |
Версия 14:04, 19 марта 2010
Содержание
Определения
- Литералом является переменная или отрицание переменной. Например, или .
- Дизъюнктом называется логическое ИЛИ одного или нескольких литералов. Например,
- Говорят, что формула записана в конъюнктивной нормальной форме (КНФ), если представляет собой логическое И дизъюнктов.
Определение
SAT — задача о выполнимости булевой формулы в форме КНФ.
в КНФ,Теорема
Доказательство
Для доказательства теоремы необходимо установить два факта:
Доказательство принадлежности классу NP
В качестве сертификата выберем множество
, представляющее собой набор из нулей и единиц. Верификатору останется подставить эти значения в качестве аргументов в формулу и проверить, выдает ли она единицу. Длина сертификата и время работы верификатора, очевидно, удовлетворяют условиям полиномиальности. Таким образом,Доказательство принадлежности классу NPH
Выполним сведение по Карпу задачи
к задаче . Для этого необходимо построить функцию , вычислимую за полиномиальное время от длины входа, которая выполняла бы преобразование , где в КНФ. Заметим, что в общем случае время построения эквивалентной формулы в форме КНФ может оказаться больше полиномиального. В частности, длина формулы может вырасти экспоненциально, и тогда время порождения тоже экспоненциально вырастет. Однако нам достаточно предъявить формулу , которая будет выполнима тогда и только тогда, когда выполнима исходная формула . При этом формулы могут оказаться не эквивалентными, ввиду, например, добавления новых переменных.Итак, опишем действия функции
. На первом этапе