Избыточное кодирование, код Хэмминга — различия между версиями

Материал из Викиконспекты
Перейти к: навигация, поиск
(Код, определяющий одну ошибку)
Строка 4: Строка 4:
 
== Код, определяющий одну ошибку ==
 
== Код, определяющий одну ошибку ==
 
Увеличив объем кода на 1 бит, можно получить возможность определять при передаче наличие одной ошибки. Для этого к коду нужно добавить бит x: <tex>0110..10x</tex>, такой, чтобы сумма всех единичек была четной. В случае, если контрольная сумма окажется нечетной, следует отправить запрос на повторную посылку элемента, в котором была обнаружена ошибка. Такое кодирование применяется только если вероятность ошибки крайне мала, например, в оперативной памяти компьютера.
 
Увеличив объем кода на 1 бит, можно получить возможность определять при передаче наличие одной ошибки. Для этого к коду нужно добавить бит x: <tex>0110..10x</tex>, такой, чтобы сумма всех единичек была четной. В случае, если контрольная сумма окажется нечетной, следует отправить запрос на повторную посылку элемента, в котором была обнаружена ошибка. Такое кодирование применяется только если вероятность ошибки крайне мала, например, в оперативной памяти компьютера.
 +
 +
== Кодирование Хэмминга ==
 +
Кодирование Хэмминга предусматривает как возможность обнаружения ошибки, так и возможность её исправления.
 +
Рассмотрим простой пример: закодируем четыре бита: <tex>a, b, c, d</tex>. Полученный код будет иметь длину в 8 бит и выглядеть следующим образом: <tex>a,b,c,d, a \oplus b, c \oplus d, a \oplus c, b \oplus d.</tex>
 +
Рассмотрим табличную визуализацию кода:
 +
 +
{| border="1"
 +
! <tex>a</tex> || <tex>b</tex> || <tex>a \oplus b</tex>
 +
|-
 +
! <tex>c</tex> || <tex>d</tex> || <tex>c \oplus d</tex>
 +
|-
 +
! <tex>a \oplus c</tex> || <tex>b \oplus d</tex>
 +
|}
 +
 +
Как видно из таблицы, даже если один из битов <tex>a, b, c, d</tex> передался с ошибкой, содержащие его <tex>xor-</tex>суммы не сойдутся. Итого, зная строку и столбец в проиллюстрированной таблице можно точно исправить ошибочный бит.

Версия 02:14, 31 октября 2010

Эта статья находится в разработке!

Избыточное кодирование - вид кодирования, использующий избыточное количество информации с целью последующего контроля целостности данных при записи/воспроизведении информации или при её передаче по линиям связи.

Код, определяющий одну ошибку

Увеличив объем кода на 1 бит, можно получить возможность определять при передаче наличие одной ошибки. Для этого к коду нужно добавить бит x: [math]0110..10x[/math], такой, чтобы сумма всех единичек была четной. В случае, если контрольная сумма окажется нечетной, следует отправить запрос на повторную посылку элемента, в котором была обнаружена ошибка. Такое кодирование применяется только если вероятность ошибки крайне мала, например, в оперативной памяти компьютера.

Кодирование Хэмминга

Кодирование Хэмминга предусматривает как возможность обнаружения ошибки, так и возможность её исправления. Рассмотрим простой пример: закодируем четыре бита: [math]a, b, c, d[/math]. Полученный код будет иметь длину в 8 бит и выглядеть следующим образом: [math]a,b,c,d, a \oplus b, c \oplus d, a \oplus c, b \oplus d.[/math] Рассмотрим табличную визуализацию кода:

[math]a[/math] [math]b[/math] [math]a \oplus b[/math]
[math]c[/math] [math]d[/math] [math]c \oplus d[/math]
[math]a \oplus c[/math] [math]b \oplus d[/math]

Как видно из таблицы, даже если один из битов [math]a, b, c, d[/math] передался с ошибкой, содержащие его [math]xor-[/math]суммы не сойдутся. Итого, зная строку и столбец в проиллюстрированной таблице можно точно исправить ошибочный бит.